Urban inland wintertime N<sub>2</sub>O<sub>5</sub> and ClNO<sub>2</sub> influenced by snow-covered ground, air turbulence, and precipitation

Author:

Kulju Kathryn D.ORCID,McNamara Stephen M.,Chen QianjieORCID,Kenagy Hannah S.,Edebeli Jacinta,Fuentes Jose D.,Bertman Steven B.,Pratt Kerri A.ORCID

Abstract

Abstract. The atmospheric multiphase reaction of dinitrogen pentoxide (N2O5) with chloride-containing aerosol particles produces nitryl chloride (ClNO2), which has been observed across the globe. The photolysis of ClNO2 produces chlorine radicals and nitrogen dioxide (NO2), which alter pollutant fates and air quality. However, the effects of local meteorology on near-surface ClNO2 production are not yet well understood, as most observational and modeling studies focus on periods of clear conditions. During a field campaign in Kalamazoo, Michigan, from January–February 2018, N2O5 and ClNO2 were measured using chemical ionization mass spectrometry, with simultaneous measurements of atmospheric particulate matter and meteorological parameters. We examine the impacts of atmospheric turbulence, precipitation (snow, rain) and fog, and ground cover (snow-covered and bare ground) on the abundances of ClNO2 and N2O5. N2O5 mole ratios were lowest during periods of lower turbulence and were not statistically significantly different between snow-covered and bare ground. In contrast, ClNO2 mole ratios were highest, on average, over snow-covered ground, due to saline snowpack ClNO2 production. Both N2O5 and ClNO2 mole ratios were lowest, on average, during rainfall and fog because of scavenging, with N2O5 scavenging by fog droplets likely contributing to observed increased particulate nitrate concentrations. These observations, specifically those during active precipitation and with snow-covered ground, highlight important processes, including N2O5 and ClNO2 wet scavenging, fog nitrate production, and snowpack ClNO2 production, that govern the variability in observed atmospheric chlorine and nitrogen chemistry and are missed when considering only clear conditions.

Funder

Alfred P. Sloan Foundation

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

National Science Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3