Microphysical processes producing high ice water contents (HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: dominant role of secondary ice production
-
Published:2022-02-22
Issue:4
Volume:22
Page:2365-2384
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Huang YongjieORCID, Wu WeiORCID, McFarquhar Greg M.ORCID, Xue Ming, Morrison Hugh, Milbrandt Jason, Korolev Alexei V., Hu Yachao, Qu Zhipeng, Wolde Mengistu, Nguyen Cuong, Schwarzenboeck Alfons, Heckman Ivan
Abstract
Abstract. High ice water content (HIWC) regions in tropical deep convective clouds, composed of high concentrations of small ice crystals, were not reproduced by Weather Research and Forecasting (WRF) model simulations at 1 km horizontal grid spacing using four different bulk microphysics schemes (i.e., the WRF single‐moment 6‐class microphysics scheme (WSM6), the Morrison scheme and the Predicted Particle Properties (P3) scheme with one- and two-ice options) for conditions encountered during the High Altitude Ice Crystals (HAIC) and HIWC experiment. Instead, overestimates of radar reflectivity and underestimates of ice number concentrations were realized. To explore formation mechanisms for large numbers of small ice crystals in tropical convection, a series of quasi-idealized WRF simulations varying the model resolution, aerosol profile, and representation of secondary ice production (SIP) processes are conducted based on an observed radiosonde released at Cayenne during the HAIC-HIWC field campaign. The P3 two-ice category configuration, which has two “free” ice categories to represent all ice-phase hydrometeors, is used. Regardless of the horizontal grid spacing or aerosol profile used, without including SIP processes the model produces total ice number concentrations about 2 orders of magnitude less than observed at −10 ∘C and about an order of magnitude less than observed at −30 ∘C but slightly overestimates the total ice number concentrations at −45 ∘C. Three simulations including one of three SIP mechanisms separately (i.e., the Hallett–Mossop mechanism, fragmentation during ice–ice collisions, and shattering of freezing droplets) also do not replicate observed HIWCs, with the results of the simulation including shattering of freezing droplets most closely resembling the observations. The simulation including all three SIP processes produces HIWC regions at all temperature levels, remarkably consistent with the observations in terms of ice number concentrations and radar reflectivity, which is not replicated using the original P3 two-ice category configuration. This simulation shows that primary ice production plays a key role in generating HIWC regions at temperatures <-40 ∘C, shattering of freezing droplets dominates ice particle production in HIWC regions at temperatures between −15 and 0 ∘C during the early stage of convection, and fragmentation during ice–ice collisions dominates at temperatures between −15 and 0 ∘C during the later stage of convection and at temperatures between −40 and −20 ∘C over the whole convection period. This study confirms the dominant role of SIP processes in the formation of numerous small crystals in HIWC regions.
Funder
National Science Foundation
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference78 articles.
1. Ackerman, A. S., Fridlind, A. M., Grandin, A., Dezitter, F., Weber, M., Strapp, J. W., and Korolev, A. V.: High ice water content at low radar reflectivity near deep convection – Part 2: Evaluation of microphysical pathways in updraft parcel simulations, Atmos. Chem. Phys., 15, 11729–11751, https://doi.org/10.5194/acp-15-11729-2015, 2015. a 2. Atlas, R., Bretherton, C. S., Blossey, P. N., Gettelman, A., Bardeen, C., Lin,
P., and Ming, Y.: How Well Do Large-Eddy Simulations and Global Climate
Models Represent Observed Boundary Layer Structures and Low Clouds Over the
Summertime Southern Ocean?, J. Adv. Model. Earth Sy.,
12, e2020MS002205, https://doi.org/10.1029/2020MS002205, 2020. a 3. Brownscombe, J. and Thorndike, N.: Freezing and shattering of water droplets in
free fall, Nature, 220, 687–689, https://doi.org/10.1038/220687a0, 1968. a 4. Bryan, G. H. and Morrison, H.: Sensitivity of a simulated squall line to
horizontal resolution and parameterization of microphysics, Mon. Weather
Rev., 140, 202–225, https://doi.org/10.1175/MWR-D-11-00046.1, 2012. a 5. Cantrell, W. and Heymsfield, A.: Production of ice in tropospheric clouds: A
review, B. Am. Meteorol. Soc., 86, 795–808,
https://doi.org/10.1175/BAMS-86-6-795, 2005. a
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|