Investigating the impact of Saharan dust aerosols on analyses and forecasts of African easterly waves by constraining aerosol effects in radiance data assimilation

Author:

Grogan Dustin Francis PhillipORCID,Lu Cheng-HsuanORCID,Wei Shih-WeiORCID,Chen Sheng-Po

Abstract

Abstract. This study incorporates aerosol effects into satellite radiance calculations within the Global Data Assimilation System (GDAS) to investigate its impact on the analyses and forecasts of African easterly waves (AEWs). Analysis fields from the aerosol-aware assimilation experiment were compared to an aerosol-blind control during August 2017. The results showed that the aerosol-aware assimilation warmed the Saharan boundary layer, accelerated the African easterly jet, and modified the time-averaged AEWs by enhancing the northern track and reducing the southern track. The changes to the tracks are qualitatively consistent with arguments of baroclinic and barotropic instability. During the time period, we also examined two AEWs that developed hurricanes Gert and Harvey over the Atlantic but were structurally different over Africa; the AEW for Gert consisted of a southern vortex, while the AEW for Harvey consisted of a northern and southern vortex. Analysis differences of the cases showed stronger vorticity changes for the AEW that developed Harvey, which we attribute to the aerosol-aware assimilation capturing the radiative effects of a large-scale Saharan dust plume interacting with the northern vortex of the wave. Subsequent forecasts for the AEW cases using the Global Forecast System (GFS, v14) showed that the aerosol-aware assimilation reduced errors in the downstream vorticity structure for the AEW that developed Harvey; neutral improvement was found for the AEW that developed Gert. Thus, aerosol-affected radiances in the assimilation system have the ability to account for dust radiative effects on the analyzed AEWs, which, in turn, can improve the forecasting of AEWs downstream.

Funder

National Oceanic and Atmospheric Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference62 articles.

1. Benedetti, A., Reid, J. S., Knippertz, P., Marsham, J. H., Di Giuseppe, F., Rémy, S., Basart, S., Boucher, O., Brooks, I. M., Menut, L., Mona, L., Laj, P., Pappalardo, G., Wiedensohler, A., Baklanov, A., Brooks, M., Colarco, P. R., Cuevas, E., da Silva, A., Escribano, J., Flemming, J., Huneeus, N., Jorba, O., Kazadzis, S., Kinne, S., Popp, T., Quinn, P. K., Sekiyama, T. T., Tanaka, T., and Terradellas, E.: Status and future of numerical atmospheric aerosol prediction with a focus on data requirements, Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, 2018.

2. Bercos-Hickey, E., Nathan, T. R., and Chen, S.-H.: Saharan dust and the African easterly jet-African easterly wave system: structure, location and energetics, Q. J. Roy. Meteor. Soc., 143, 2797–2808, https://doi.org/10.1002/qj.3128, 2017.

3. Bercos-Hickey, E., Nathan, T. R., and Chen, S.-H.: On the Relationship between the African Easterly Jet, Saharan Mineral Dust Aerosols, and West African Precipitation, J. Climate, 143, 3533–3546, https://doi.org/10.1175/JCLI-D-18-0661.1, 2020.

4. Berry G. J. and Thorncroft C. D.: Case study of an intense African easterly wave, Mon. Weather Rev., 123, 752–766, https://doi.org/10.1175/MWR2884.1, 2005.

5. Bozzo, A., Remy, S., Benedetti, A., Fleming, J., Betchold, P., Rodwell, M. J., and Morcrette, J.-J.: Implementation of a CAMS-based aerosol climatology in the IFS, ECMWF Technical Memorandum, 801, ECMWF, <span class="uri">https://www.ecmwf.int/en/elibrary/17771-radiation-numerical-weather-prediction</span> (last access: 17 February 2022), 2017.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3