Characterizing the volatility and mixing state of ambient fine particles in the summer and winter of urban Beijing

Author:

Chen Lu,Zhang Fang,Collins Don,Ren Jingye,Liu Jieyao,Jiang Sihui,Li ZhanqingORCID

Abstract

Abstract. Understanding the volatility of atmospheric aerosols is important for elucidating the formation of fine particles and to help determine their effect on the environment and climate. In this study, the volatility of fine particles (40, 80, 110, 150, 200, and 300 nm) is characterized by the size-dependent volatility shrink factor (VSF) for summer and winter in the urban area of Beijing using measurements of a volatility tandem differential mobility analyzer (VTDMA). We show that there are two persistent aerosol volatility modes (one high-volatility and one less- or non-volatile mode) present both in the summer and winter. On average, the particles are more volatile in the summer (with a mean VSF of 0.3) than in the winter (with a mean VSF of 0.6). Although the new particle formation (NPF) process requires low-volatility vapors to form molecular clusters and nuclei, the significant high-volatility mode around noon on NPF days indicates partitioning of volatile substances into the growing particles during summer. We further retrieve the mixing state of the ambient fine particles from the size-resolved VSF and find that the non-black carbon (BC) particles that formed from nucleation processes accounted for 52 %–69 % of the total number concentration in the summer. On the other hand, particles containing a refractory core that is thought to be BC-containing particles dominate and contribute 67 %–77 % toward the total number concentration in the winter. The diurnal cycles of the retrieved aerosol mixing state for the summer further support the conclusion that the nucleation process is the main contributor to non-BC particles. In addition, the extent of aging of BC particles was characterized as the ratio of the BC diameter before and after heating at 300 ∘C (Dp/Dc), showing that the average ratio of ∼ 2.2 in the winter is higher than the average of ∼ 1.5 in the summer, which indicates that BC aging may be less efficient in summertime. This would result in differences in light absorption enhancement between the cold and warm seasons.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3