Coccolithophores on the north-west European shelf: calcification rates and environmental controls

Author:

Poulton A. J.ORCID,Stinchcombe M. C.,Achterberg E. P.,Bakker D. C. E.ORCID,Dumousseaud C.,Lawson H. E.,Lee G. A.,Richier S.,Suggett D. J.,Young J. R.

Abstract

Abstract. Coccolithophores are a key functional group in terms of the pelagic production of calcium carbonate (calcite), although their contribution to shelf-sea biogeochemistry, and how this relates to environmental conditions, is poorly constrained. Measurements of calcite production (CP) and coccolithophore abundance were made on the north-west European shelf to examine trends in coccolithophore calcification along natural gradients of carbonate chemistry, macronutrient availability and plankton composition. Similar measurements were also made in three bioassay experiments where nutrient (nitrate, phosphate) and pCO2 levels were manipulated. Nanoflagellates (< 10 μm) dominated chlorophyll biomass and primary production (PP) at all but one sampling site, with CP ranging from 0.6–9.6 mmol C m−2d−1. Highest CP and coccolithophore cell abundance occurred in a diatom bloom in fully mixed waters off Helgoland, rather than in two distinct coccolithophore blooms in the central North Sea and Western English Channel. Estimates of coccolithophore contributions to total PP and nanoplankton PP were generally < 5%, apart from in a coccolithophore bloom at the Western English Channel Observatory (E1) where coccolithophores contributed up to 11% and at Helgoland where they contributed ~23% to nanoplankton PP. Variability in CP was influenced by cell numbers, species composition and cell-normalised calcification rates under both in situ conditions and in the experimental bioassays. Water column structure and light availability had a strong influence on cellular calcification, whereas nitrate (N) to phosphate (P) ratios influenced bulk CP. Coccolithophore communities in the northern North Sea and over the Norwegian Trench showed responses to N and P addition whereas oceanic communities in the Bay of Biscay showed no response. Sharp decreases in pH and a rough halving of calcite saturation states in the bioassay experiments led to decreased CP in the Bay of Biscay and Northern North Sea, but not over the Norwegian Trench. These variable relationships to nutrient availability and changes in carbonate chemistry highlight the complex response of coccolithophore physiology to growth environment.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3