Momentum fluxes from airborne wind measurements in three cumulus cases over land

Author:

Koning Ada MariskaORCID,Nuijens Louise,Mallaun Christian

Abstract

Abstract. Measurements of wind and momentum fluxes are not typically at the centre of field studies on (shallow) cumulus convection, but the mesoscale organization of convection is likely closely tied to patterns in wind. This study combines in situ high-frequency turbulence measurements from a gust probe onboard a Cessna aircraft with downward profiling Doppler wind lidar (DWL) measurements onboard a Falcon aircraft to study variability in the wind profile and momentum fluxes in regions of convection. The dual-aircraft measurements were made during three prototype flights in shallow convective regimes over German agricultural areas (two of which had hilly topography, one flat) in late spring 2019, including forced cumulus humilis under weak winds and “popcorn” cumuli during stronger wind and wind shear after front passages. All flights show pronounced meso-gamma (2–20 km) scale variability in the wind, with the largest wind variance (on the order of 2–4 m2 s−2) towards cloud base and in the cloud layer on flights with large vertical wind shear. The wind and wind variance profiles measured in situ and by lidar compare very well, despite the DWL's coarse (∼ 8 km) horizontal footprint. This highlights the presence of wind fluctuations on scales larger than a few kilometres and that wind lidars can be used more deliberately in field studies to map (mesoscale) flows. Cloudy transects are associated with more than twice the momentum flux compared with cloud-free transects. The contribution of the updraft to the total momentum flux, typically one-third to two-thirds, is far less than the typical contribution of the updraft to buoyancy flux. Even on the same flight day, momentum flux profiles can differ per track, with one case of counter-gradient momentum transport when the updraft does carry substantial momentum flux. Scales beyond 1 km contribute significantly to the momentum flux and there is clear evidence for compensating flux contributions across scales. The results demonstrate that momentum flux profiles and their variability require understanding of motions across a range of scales, with non-negligible contributions of the clear-sky fluxes and of mesoscales that are likely coupled to the convection.

Funder

H2020 European Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3