Distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and <i>α</i>-dicarbonyls in fresh and aged biomass burning aerosols

Author:

Shen Minxia,Ho Kin Fai,Dai Wenting,Liu Suixin,Zhang Ting,Wang Qiyuan,Meng Jingjing,Chow Judith C.,Watson John G.ORCID,Cao Junji,Li JianjunORCID

Abstract

Abstract. Biomass burning (BB) is a significant source of dicarboxylic acids (diacids) and related compounds that play important roles in atmospheric chemistry and climate change. In this study, a combustion chamber and oxidation flow reactor were used to generate fresh and aged aerosols from burned rice, maize and wheat straw to investigate atmospheric aging and the stable carbon isotopic (δ13C) composition of these emissions. Succinic acid (C4) was the most abundant species in fresh samples, while oxalic acid (C2) became dominant after atmospheric aging. Of all diacids, C2 had the highest aged to fresh emission ratios (A/F), suggesting that C2 is largely produced through secondary photochemical processes. Compared with fresh samples, the emission factors of ketocarboxylic acids and α-dicarbonyls increased after 2 d but decreased after 7 d aging, indicating a short residence time and further atmospheric degradation from 2 to 7 d. The δ13C values of C2 for aged biomass samples were higher than those of urban aerosols but lower than marine or mountain aerosols, and the δ13C values of C2 became isotopically heavier during aging. Relationships between the reduction in volatile organic compounds (VOCs), such as toluene, benzene and isoprene, and increase in diacids after 2 d aging indicate that these VOCs led to the formation of diacids. However, no significant correlation was found between decreases in VOCs and increases in 7 d aged diacids. In addition, the A/F of C2 was 50.8 at 2 d and 64.5 at 7 d, indicating that the conversion of VOCs to C2 was almost completed within 2 d. For the longer aging times, the particulate-phase compounds may undergo further degradation in the oxidation processes.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference90 articles.

1. Agarwal, S., Aggarwal, S. G., Okuzawa, K., and Kawamura, K.: Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols, Atmos. Chem. Phys., 10, 5839–5858, https://doi.org/10.5194/acp-10-5839-2010, 2010.

2. Aggarwal, S. G. and Kawamura K.: Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: Implications for photochemical aging during long-range atmospheric transport, J. Geophys. Res., 113, D14301, https://doi.org/10.1029/2007JD009365, 2008.

3. Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.

4. Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001.

5. Bikkina, S., Kawamura, K., Sakamoto, Y., and Hirokawa, J.: Low molecular weight dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls as ozonolysis products of isoprene: Implication for the gaseous-phase formation of secondary organic aerosols, Sci. Total Environ., 769, 14472, https://doi.org/10.1016/j.scitotenv.2020.144472, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3