Controls on Early Cretaceous South Atlantic Ocean circulation and carbon burial – a climate model–proxy synthesis

Author:

Steinig SebastianORCID,Dummann Wolf,Hofmann PeterORCID,Frank Martin,Park WonsunORCID,Wagner Thomas,Flögel Sascha

Abstract

Abstract. Black shale sediments from the Barremian to Aptian South Atlantic document the intense and widespread burial of marine organic carbon during the initial stages of seafloor spreading between Africa and South America. The enhanced sequestration of atmospheric CO2 makes these young ocean basins potential drivers of the Early Cretaceous carbon cycle and climate perturbations. The opening of marine gateways between initially restricted basins and related circulation and ventilation changes are a commonly invoked explanation for the transient formation and disappearance of these regional carbon sinks. However, large uncertainties in palaeogeographic reconstructions limit the interpretation of available palaeoceanographic data and prevent any robust model-based quantifications of the proposed circulation and carbon burial changes. Here, we present a new approach to assess the principal controls on the Early Cretaceous South Atlantic and Southern Ocean circulation changes under full consideration of the uncertainties in available boundary conditions. Specifically, we use a large ensemble of 36 climate model experiments to simulate the Barremian to Albian progressive opening of the Falkland Plateau and Georgia Basin gateways with different configurations of the proto-Drake Passage, the Walvis Ridge, and atmospheric CO2 concentrations. The experiments are designed to complement available geochemical data across the regions and to test circulation scenarios derived from them. All simulations show increased evaporation and intermediate water formation at subtropical latitudes that drive a meridional overturning circulation whose vertical extent is determined by the sill depth of the Falkland Plateau. The densest water masses formed in the southern Angola Basin and potentially reached the deep Cape Basin as Walvis Ridge Overflow Water. Palaeogeographic uncertainties are as important as the lack of precise knowledge of atmospheric CO2 levels for the simulated temperature and salinity spread in large parts of the South Atlantic. Overall temperature uncertainties reach up to 15 °C and increase significantly with water depth. The ensemble approach reveals temporal changes in the relative importance of geographic and radiative forcings for the simulated oceanographic conditions and, importantly, nonlinear interactions between them. The progressive northward opening of the highly restricted Angola Basin increased the sensitivity of local overturning and upper-ocean stratification to atmospheric CO2 concentrations due to large-scale changes in the hydrological cycle, while the chosen proto-Drake Passage depth is critical for the ocean dynamics and CO2 response in the southern South Atlantic. Finally, the simulated processes are integrated into a recent carbon burial framework to document the principal control of the regional gateway evolution on the progressive shift from the prevailing saline and oxygen-depleted subtropical water masses to the dominance of ventilated high-latitude deep waters.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Reference75 articles.

1. Arthur, M. A. and Natland, J. H.: Carbonaceous Sediments in the North and South Atlantic: The Role of Salinity in Stable Stratification of Early Cretaceous Basins, in: Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, American Geophysical Union (AGU), 375–401, ISBN 978-1-118-66583-1, 1979. a

2. Barron, E. J. and Washington, W. M.: The role of geographic variables in explaining paleoclimates: results from Cretaceous climate model sensitivity studies, J. Geophys. Res., 89, 1267–1279, https://doi.org/10.1029/JD089iD01p01267, 1984. a

3. Basov, I. and Krasheninnikov, V.: Benthic Foraminifers in Mesozoic and Cenozoic Sediments of the Southwestern Atlantic As an Indicator of Paleoenvironment, Deep Sea Drilling Project Leg 71, in: Initial Reports of the Deep Sea Drilling Project, 71, U.S. Government Printing Office, https://doi.org/10.2973/dsdp.proc.71.128.1983, 1983. a

4. Behrooz, L., Naafs, B. D., Dickson, A. J., Love, G. D., Batenburg, S. J., and Pancost, R. D.: Astronomically Driven Variations in Depositional Environments in the South Atlantic During the Early Cretaceous, Paleoceanography and Paleoclimatology, 33, 894–912, https://doi.org/10.1029/2018PA003338, 2018. a, b

5. Bice, K. L., Huber, B. T., and Norris, R. D.: Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511, Paleoceanography, 18, 2002PA000848, https://doi.org/10.1029/2002PA000848, 2003. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3