Ozone and haze pollution weakens net primary productivity in China
-
Published:2017-05-16
Issue:9
Volume:17
Page:6073-6089
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Yue XuORCID, Unger NadineORCID, Harper KandiceORCID, Xia XiangaoORCID, Liao Hong, Zhu TongORCID, Xiao Jingfeng, Feng ZhaozhongORCID, Li JingORCID
Abstract
Abstract. Atmospheric pollutants have both beneficial and detrimental effects on carbon uptake by land ecosystems. Surface ozone (O3) damages leaf photosynthesis by oxidizing plant cells, while aerosols promote carbon uptake by increasing diffuse radiation and exert additional influences through concomitant perturbations to meteorology and hydrology. China is currently the world's largest emitter of both carbon dioxide and short-lived air pollutants. The land ecosystems of China are estimated to provide a carbon sink, but it remains unclear whether air pollution acts to inhibit or promote carbon uptake. Here, we employ Earth system modeling and multiple measurement datasets to assess the separate and combined effects of anthropogenic O3 and aerosol pollution on net primary productivity (NPP) in China. In the present day, O3 reduces annual NPP by 0.6 Pg C (14 %) with a range from 0.4 Pg C (low O3 sensitivity) to 0.8 Pg C (high O3 sensitivity). In contrast, aerosol direct effects increase NPP by 0.2 Pg C (5 %) through the combination of diffuse radiation fertilization, reduced canopy temperatures, and reduced evaporation leading to higher soil moisture. Consequently, the net effects of O3 and aerosols decrease NPP by 0.4 Pg C (9 %) with a range from 0.2 Pg C (low O3 sensitivity) to 0.6 Pg C (high O3 sensitivity). However, precipitation inhibition from combined aerosol direct and indirect effects reduces annual NPP by 0.2 Pg C (4 %), leading to a net air pollution suppression of 0.8 Pg C (16 %) with a range from 0.6 Pg C (low O3 sensitivity) to 1.0 Pg C (high O3 sensitivity). Our results reveal strong dampening effects of air pollution on the land carbon uptake in China today. Following the current legislation emission scenario, this suppression will be further increased by the year 2030, mainly due to a continuing increase in surface O3. However, the maximum technically feasible reduction scenario could drastically relieve the current level of NPP damage by 70 % in 2030, offering protection of this critical ecosystem service and the mitigation of long-term global warming.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference64 articles.
1. Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D.: The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change, Annu. Rev. Plant Biol., 63, 637–661, https://doi.org/10.1146/Annurev-Arplant-042110-103829, 2012. 2. Alton, P. B.: Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies, Agr. Forest Meteorol., 148, 1641–1653, https://doi.org/10.1016/j.agrformet.2008.05.014, 2008. 3. Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Hoglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schopp, W., Wagner, F., and Winiwarter, W.: Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications, Environ. Modell. Softw., 26, 1489–1501, https://doi.org/10.1016/j.envsoft.2011.07.012, 2011. 4. Bai, Y., Wang, J., Zhang, B., Zhang, Z., and Liang, J.: Comparing the impact of cloudiness on carbon dioxide exchange in a grassland and a maize cropland in northwestern China, Ecol. Res., 27, 615–623, https://doi.org/10.1007/s11284-012-0930-z, 2012. 5. Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the control of photosyn- thesis under different environmental conditions, in: Progress in Photosynthesis Research, edited by: Biggins, J., Nijhoff, Dordrecht, the Netherlands, 110–112, 1987.
Cited by
179 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|