Surface ozone in the Southern Hemisphere: 20 years of data from a site with a unique setting in El Tololo, Chile
-
Published:2017-05-31
Issue:10
Volume:17
Page:6477-6492
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Anet Julien G.ORCID, Steinbacher MartinORCID, Gallardo LauraORCID, Velásquez Álvarez Patricio A.ORCID, Emmenegger LukasORCID, Buchmann Brigitte
Abstract
Abstract. The knowledge of surface ozone mole fractions and their global distribution is of utmost importance due to the impact of ozone on human health and ecosystems and the central role of ozone in controlling the oxidation capacity of the troposphere. The availability of long-term ozone records is far better in the Northern than in the Southern Hemisphere, and recent analyses of the seven accessible records in the Southern Hemisphere have shown inconclusive trends. Since late 1995, surface ozone is measured in situ at "El Tololo", a high-altitude (2200 m a.s.l.) and pristine station in Chile (30° S, 71° W). The dataset has been recently fully quality controlled and reprocessed. This study presents the observed ozone trends and annual cycles and identifies key processes driving these patterns. From 1995 to 2010, an overall positive trend of ∼ 0.7 ppb decade−1 is found. Strongest trends per season are observed in March and April. Highest mole fractions are observed in late spring (October) and show a strong correlation with ozone transported from the stratosphere down into the troposphere, as simulated with a model. Over the 20 years of observations, the springtime ozone maximum has shifted to earlier times in the year, which, again, is strongly correlated with a temporal shift in the occurrence of the maximum of simulated stratospheric ozone transport at the site. We conclude that background ozone at El Tololo is mainly driven by stratospheric intrusions rather than photochemical production from anthropogenic and biogenic precursors. The major footprint of the sampled air masses is located over the Pacific Ocean. Therefore, due to the negligible influence of local processes, the ozone record also allows studying the influence of El Niño and La Niña episodes on background ozone levels in South America. In agreement with previous studies, we find that, during La Niña conditions, ozone mole fractions reach higher levels than during El Niño conditions.
Funder
Direktion für Entwicklung und Zusammenarbeit
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference79 articles.
1. Ayers, G. P., Penkett, S. A., Gillet, R. W., Bandy, B., Galbally, I. E., Meyer, C. P., Elsworth, C. M., Bentley, S. T., and Forgan, B. W.: Evidence for photochemical control of ozone concentrations in unpolluted marine air, Nature, 360, 446–449, https://doi.org/10.1038/360446a0, 1992. 2. Barlasina, M. E., Carbajal Benitez, G., Copes, G., Demasi, M., and Cupeiro, M.: Estudio del ozono troposférico en tres observatorios de la red de medición del servicio meteorológico nacional – argentina, Proceedings CONGREMET XI, Mendoza, 29 May–1 June 2012, available at: http://www.congremet.prmarg.org/upload/barlasinamaelena.pdf (last access: 20 May 2017), 2013. 3. Barnhart, B. L., Nandage, H. K. W., and Eichinger, W.: Assessing Discontinuous Data Using Ensemble Empirical Mode Decomposition, Advances in Adaptive Data Analysis, 03, 483–491, https://doi.org/10.1142/s179353691100091x, 2011. 4. Baylon, P., Jaffe, D. A., Wigder, N. L., Gao, H., and Hee, J.: Ozone enhancement in western US wildfire plumes at the Mt. Bachelor Observatory: The role of NOx, Atmos. Environ., 109, 297–304, https://doi.org/10.1016/j.atmosenv.2014.09.013, 2015. 5. Bloomer, B. J., Vinnikov, K. Y., and Dickerson, R. R.: Changes in seasonal and diurnal cycles of ozone and temperature in the eastern U.S, Atmos. Environ., 44, 2543–2551, https://doi.org/10.1016/j.atmosenv.2010.04.031, 2010.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|