Abstract
Abstract. Machine learning has shown great promise for simulating hydrological phenomena. However, the development of machine learning-based hydrological models requires advanced skills from diverse fields, such as programming and hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine learning models is a time-intensive process. In this study, we developed a python-based framework that simplifies the process of building and training machine learning-based hydrological models and automates the process of pre-processing of hydrological data and post-processing of model results. Pre-processing utilities assist in incorporating domain knowledge of hydrology in the machine learning model, such as the distribution of weather data into hydrologic response units (HRUs) based on different HRU discretization definitions. The post-processing utilities help in interpreting the model’s results from a hydrological point of view. This framework will help increase the application of machine learning-based modeling approaches in hydrological sciences.
Funder
Korea Environmental Industry and Technology Institute
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献