Abstract
Abstract. The ability of Machine-Learning (ML) based model components to generalize to the previously unseen inputs, and the resulting stability of the models that use these components, has been receiving a lot of recent attention, especially when it comes to ML-based parameterizations. At the same time, ML-based emulators of existing parameterizations can be stable, accurate, and fast when used in the model they were specifically designed for. In this work we show that shallow-neural-network-based emulators of radiative transfer parameterizations developed almost a decade ago for a state-of-the-art GCM are robust with respect to the substantial structural and parametric change in the host model: when used in two seven month-long experiments with the new model, they not only remain stable, but generate realistic output. Aspects of neural network architecture and training set design potentially contributing to stability of ML-based model components are discussed.
Funder
National Oceanic and Atmospheric Administration
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献