Author:
Gazeau F.,Gattuso J.-P.,Dawber C.,Pronker A. E.,Peene F.,Peene J.,Heip C. H. R.,Middelburg J. J.
Abstract
Abstract. Several experiments have shown a decrease of growth and calcification of organisms at decreased pH levels but relatively few studies have focused on early life stages which are believed to be more sensitive to environmental disturbances such as hypercapnia. Here, we present experimental data demonstrating that the growth of planktonic mussel (Mytilus edulis) larvae is significantly affected by a decrease of pH to a level expected for the end of the century. Even though there was no significant effect of a 0.25–0.34 pH unit decrease on hatching and mortality rates during the first 2 days of development nor during the following 13-day period prior to settlement, final shells were, respectively, 4.5±1.3 and 6.0±2.3% smaller at pHNBS~7.8 than at a control pHNBS of ~8.1. Moreover, a decrease of 12.0±5.4% of shell thickness was observed. More severe impacts were found with a decrease of ~0.5 pHNBS unit during the first 2 days of development which could be attributed to a decrease of calcification due toslight undersaturation of seawater with respect to aragonite. Indeed, important effects on both hatching and D-veliger shell growth were found. Hatching rates were 24±4% lower while D-veliger shells were 12.7±0.9% smaller at pHNBS~7.6 than at a control pHNBS of ~8.1. Although these results show that blue mussel larvae are still able to develop a shell in seawater undersaturated with respect to aragonite, decreases of hatching rates and shell growth suggest a negative impact of ocean acidification on the future survival of bivalve populations potentially leading to significant ecological and economical losses.
Reference35 articles.
1. Bayne, B. L.: Marine mussels: their ecology and physiology, International Biological Programme 10, Cambridge University Press, Cambridge, 506 pp., 1976.
2. Broecker, W. S. and Takahashi, T.: Calcium carbonate precipitation on the Bahama Banks, J. Geophys. Res., 71, 1575–1602, 1966.
3. Caldeira, K. and Wickett, M. E.: Anthropogenic carbon and ocean pH, Nature, 425, 365–365, 2003.
4. Comeau, S., Gorsky, G., Jeffree, R., Teyssié, J.-L., and Gattuso, J.-P.: Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina), Biogeosciences, 6, 1877–1882, 2009.
5. Cooley, S. R. and Doney, S. C.: Anticipating ocean acidification's economic consequences for commercial fisheries, Environ. Res. Lett., 4(8), 024007, https://doi.org/10.1088/1748-9326/4/2/024007, 2009.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献