Discrete-Element bonded-particle Sea Ice model DESIgn, version 1.3a – model description and implementation
-
Published:2016-04-01
Issue:3
Volume:9
Page:1219-1241
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Abstract
Abstract. This paper presents theoretical foundations, numerical implementation and examples of application of the two-dimensional Discrete-Element bonded-particle Sea Ice model – DESIgn. In the model, sea ice is represented as an assemblage of objects of two types: disk-shaped "grains" and semi-elastic bonds connecting them. Grains move on the sea surface under the influence of forces from the atmosphere and the ocean, as well as interactions with surrounding grains through direct contact (Hertzian contact mechanics) and/or through bonds. The model has an experimental option of taking into account quasi-three-dimensional effects related to the space- and time-varying curvature of the sea surface, thus enabling simulation of ice breaking due to stresses resulting from bending moments associated with surface waves. Examples of the model's application to simple sea ice deformation and breaking problems are presented, with an analysis of the influence of the basic model parameters ("microscopic" properties of grains and bonds) on the large-scale response of the modeled material. The model is written as a toolbox suitable for usage with the open-source numerical library LIGGGHTS. The code, together with full technical documentation and example input files, is freely available with this paper and on the Internet.
Publisher
Copernicus GmbH
Reference83 articles.
1. Asadi, M., Rasouli, V., and Barla, G.: A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures, Rock Mech. Rock Eng., 45, 649–675, 2012. 2. Asplin, M., Galley, R., Barber, D., and Prinsenberg, S.: Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms, J. Geophys. Res., 117, C06025, https://doi.org/10.1029/2011JC007221, 2012. 3. Asplin, M., Scharien, R., Else, B., Howell, S., Barber, D., Papakyriakou, T., and Prinsenberg, S.: Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes, J. Geophys. Res., 119, 2327–2343, https://doi.org/10.1002/2013JC009557, 2014. 4. Åström, J. A., Riikilä, T. I., Tallinen, T., Zwinger, T., Benn, D., Moore, J. C., and Timonen, J.: A particle based simulation model for glacier dynamics, The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, 2013. 5. Bahaaddini, M., Sharrock, G., and Hebblewhite, B.: Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression, Comput. Geotech., 49, 206–225, 2013.
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|