On physical mechanisms enhancing air–sea CO2 exchange

Author:

Gutiérrez-Loza LucíaORCID,Nilsson ErikORCID,Wallin Marcus B.ORCID,Sahlée Erik,Rutgersson AnnaORCID

Abstract

Abstract. Reducing uncertainties in the air–sea CO2 flux calculations is one of the major challenges when addressing the oceanic contribution in the global carbon balance. In traditional models, the air–sea CO2 flux is estimated using expressions of the gas transfer velocity as a function of wind speed. However, other mechanisms affecting the variability in the flux at local and regional scales are still poorly understood. The uncertainties associated with the flux estimates become particularly large in heterogeneous environments such as coastal and marginal seas. Here, we investigated the air–sea CO2 exchange at a coastal site in the central Baltic Sea using 9 years of eddy covariance measurements. Based on these observations we were able to capture the temporal variability in the air–sea CO2 flux and other parameters relevant for the gas exchange. Our results show that a wind-based model with a similar pattern to those developed for larger basins and open-sea conditions can, on average, be a good approximation for k, the gas transfer velocity. However, in order to reduce the uncertainty associated with these averages and produce reliable short-term k estimates, additional physical processes must be considered. Using a normalized gas transfer velocity, we identified conditions associated with enhanced exchange (large k values). During high and intermediate wind speeds (above 6–8 m s−1), conditions on both sides of the air–water interface were found to be relevant for the gas exchange. Our findings further suggest that at such relatively high wind speeds, sea spray is an efficient mechanisms for air–sea CO2 exchange. During low wind speeds (<6 m s−1), water-side convection was found to be a relevant control mechanism. The effect of both sea spray and water-side convection on the gas exchange showed a clear seasonality with positive fluxes (winter conditions) being the most affected.

Funder

Vetenskapsrådet

Uppsala Universitet

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3