Depth-related patterns in microbial community responses to complex organic matter in the western North Atlantic Ocean

Author:

Brown Sarah A.ORCID,Balmonte John Paul,Hoarfrost Adrienne,Ghobrial Sherif,Arnosti Carol

Abstract

Abstract. Oceanic bacterial communities process a major fraction of marine organic carbon. A substantial portion of this carbon transformation occurs in the mesopelagic zone, and a further fraction fuels bacteria in the bathypelagic zone. However, the capabilities and limitations of the diverse microbial communities at these depths to degrade high-molecular-weight (HMW) organic matter are not well constrained. Here, we compared the responses of distinct microbial communities from North Atlantic epipelagic (0–200 m), mesopelagic (200–1000 m), and bathypelagic (1000–4000 m) waters at two open-ocean stations to the same input of diatom-derived HMW particulate and dissolved organic matter. Microbial community composition and functional responses to the input of HMW organic matter – as measured by polysaccharide hydrolase, glucosidase, and peptidase activities – were very similar between the stations, which were separated by 1370 km but showed distinct patterns with depth. Changes in microbial community composition coincided with changes in enzymatic activities: as bacterial community composition changed in response to the addition of HMW organic matter, the rate and spectrum of enzymatic activities increased. In epipelagic mesocosms, the spectrum of peptidase activities became especially broad and glucosidase activities were very high, a pattern not seen at other depths, which, in contrast, were dominated by leucine aminopeptidase and had much lower peptidase and glucosidase rates in general. The spectrum of polysaccharide hydrolase activities was enhanced particularly in epipelagic and mesopelagic mesocosms, with fewer enhancements in rates or spectrum in bathypelagic waters. The timing and magnitude of these distinct functional responses to the same HMW organic matter varied with depth. Our results highlight the importance of residence times at specific depths in determining the nature and quantity of organic matter reaching the deep sea.

Funder

National Science Foundation

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3