Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs)
-
Published:2024-01-30
Issue:2
Volume:24
Page:1415-1427
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Thompson Rona L.ORCID, Montzka Stephen A.ORCID, Vollmer Martin K.ORCID, Arduini JgorORCID, Crotwell Molly, Krummel Paul B.ORCID, Lunder Chris, Mühle JensORCID, O'Doherty SimonORCID, Prinn Ronald G., Reimann StefanORCID, Vimont Isaac, Wang HsiangORCID, Weiss Ray F.ORCID, Young DickonORCID
Abstract
Abstract. The hydroxyl radical (OH) largely determines the atmosphere's oxidative capacity and, thus, the lifetimes of numerous trace gases, including methane (CH4). Hitherto, observation-based approaches for estimating the atmospheric oxidative capacity have primarily relied on using methyl chloroform (MCF), but as the atmospheric abundance of MCF has declined, the uncertainties associated with this method have increased. In this study, we examine the use of five hydrofluorocarbons (HFCs) (HFC-134a, HFC-152a, HFC-365mfc, HFC-245fa, and HFC-32) in multi-species inversions, which assimilate three HFCs simultaneously, as an alternative method to estimate atmospheric OH. We find robust estimates of OH regardless of which combination of the three HFCs are used in the inversions. Our results show that OH has remained fairly stable during our study period from 2004 to 2021, with variations of < 2 % and no significant trend. Inversions including HFC-32 and HFC-152a (the shortest-lived species) indicate a small reduction in OH in 2020 (1.6±0.9 % relative to the mean over 2004–2021 and 0.6±0.9 % lower than in 2019), but considering all inversions, the reduction was only 0.5±1.1 %, and OH was at a similar level to that in 2019.
Funder
Norges Forskningsråd
Publisher
Copernicus GmbH
Reference56 articles.
1. AGAGE (Advanced Global Atmospheric Gases Experiment): AGAGE, AGAGE [dataset], https://agage2.eas.gatech.edu/data_archive/agage/, last access: 20 July 2023. 2. Anderson, D. C., Duncan, B. N., Fiore, A. M., Baublitz, C. B., Follette-Cook, M. B., Nicely, J. M., and Wolfe, G. M.: Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers, Atmos. Chem. Phys., 21, 6481–6508, https://doi.org/10.5194/acp-21-6481-2021, 2021. 3. Bousquet, P., Hauglustaine, D. A., Peylin, P., Carouge, C., and Ciais, P.: Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform, Atmos. Chem. Phys., 5, 2635–2656, https://doi.org/10.5194/acp-5-2635-2005, 2005. 4. Campbell, N., Shende, R., Bennett, M., Blinova, O., Derwent, R., McCulloch, A., Yamabe, M., Shevlin, J., and Vink, T.: Chapter 11: HFCs and PFCs: Current and Future Supply, Demand and Emissions, plus Emissions of CFCs, HCFCs and Halons, in: IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System, https://www.ipcc.ch/report/safeguarding-the-ozone-layer-and-the-global-climate-system/current-and-future-supply-
demand-and-emissions-of-hfcs-and-pfcs-plus-emissions-of-
cfcs-halons/ (last access: 17 January 2024), 2005. 5. Cunnold, D. M., Steele, L. P., Fraser, P. J., Simmonds, P. G., Prinn, R. G., Weiss, R. F., Porter, L. W., O'Doherty, S., Langenfelds, R. L., and Krummel, P. B.: In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and resulting source inferences, J. Geophys. Res.-Atmos., 107, 4225, https://doi.org/10.1029/2001JD001226, 2002.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|