Higher absorption enhancement of black carbon in summer shown by 2-year measurements at the high-altitude mountain site of Pic du Midi Observatory in the French Pyrenees

Author:

Tinorua Sarah,Denjean Cyrielle,Nabat Pierre,Bourrianne Thierry,Pont Véronique,Gheusi FrançoisORCID,Leclerc EmmanuelORCID

Abstract

Abstract. Black-carbon-containing particles strongly absorb light, causing substantial radiative heating of the atmosphere. The climate-relevant properties of black carbon (BC) are poorly constrained in high-altitude mountain regions, where many complex interactions between BC, radiation, clouds and snow have important climate implications. This study presents 2-year measurements of BC microphysical and optical properties at the Pic du Midi (PDM) research station, a high-altitude observatory located at 2877 m above sea level in the French Pyrenees. Among the long-term monitoring sites in the world, PDM is subject to limited influence from the planetary boundary layer (PBL), making it a suitable site for characterizing the BC in the free troposphere (FT). The classification of the dominant aerosol type using aerosol spectral optical properties indicates that BC is the predominant aerosol absorption component at PDM and controls the variation in single-scattering albedo (SSA) throughout the 2 years. Single-particle soot photometer (SP2) measurements of refractory BC (rBC) show a mean mass concentration (MrBC) of 35 ng m−3 and a relatively constant rBC core mass-equivalent diameter of about 180 nm, which are typical values for remote mountain sites. Combining the MrBC with in situ absorption measurements, a rBC mass absorption cross-section (MACrBC) of 9.2 ± 3.7 m2 g−1 at λ=880 nm has been obtained, which corresponds to an absorption enhancement (Eabs) of ∼2.2 compared to that of bare rBC particles with equal rBC core size distribution. A significant reduction in the ΔMrBC/ΔCO ratio when precipitation occurred along the air mass transport suggests wet removal of rBC. However we found that the wet removal process did not affect the rBC size, resulting in unchanged Eabs. We observed a large seasonal contrast in rBC properties with higher MrBC and Eabs in summer than in winter. In winter a high diurnal variability in MrBC (Eabs) with higher (lower) values in the middle of the day was linked to the injection of rBC originating from the PBL. On the contrary, in summer, MrBC showed no diurnal variation despite more frequent PBL conditions, implying that MrBC fluctuations are rather dominated by regional and long-range transport in the FT. Combining the ΔMrBC/ΔCO ratio with air mass transport analysis, we observed additional sources from biomass burning in summer leading to an increase in MrBC and Eabs. The diurnal pattern of Eabs in summer was opposite to that observed in winter with maximum values of ∼2.9 observed at midday. We suggest that this daily variation may result from a photochemical process driving the rBC mixing state rather than a change in BC emission sources. Such direct 2-year observations of BC properties provide quantitative constraints for both regional and global climate models and have the potential to close the gap between model-predicted and observed effects of BC on the regional radiation budget and climate. The results demonstrate the complex influence of BC emission sources, transport pathways, atmospheric dynamics and chemical reactivity in driving the light absorption of BC.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3