Aerosol processing and CCN formation of an intense Saharan dust plume during the EUCAARI 2008 campaign
-
Published:2015-03-31
Issue:6
Volume:15
Page:3497-3516
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Bègue N.,Tulet P.,Pelon J.,Aouizerats B.,Berger A.,Schwarzenboeck A.
Abstract
Abstract. Atmospheric processing and CCN formation of Saharan dust is illustrated through the analysis of a case of dust transport over northern Europe. This spread of dust is investigated by combining satellite, airborne and ground-based observations and the non-hydrostatic meso-scale model Meso-NH. The altitude of the dust plume during its transport to northwestern Europe was assessed using the CALIPSO observations and our model results. The major dust plume was transported toward Mediterranean and European regions between 2 and 5 km above sea level (a.s.l.). This is confirmed by an average particle depolarization ratio equal to 30%. Due to transport, this layer split into two layers over northern Europe, and we analyzed in this paper possible mixing of the European pollution aerosol with dust particles in the lower layer. The simulations have shown that the lower dust layer has interacted with the anthropogenic aerosol mainly over Belgium and the Netherlands. The analyses of numerical simulation results show that mineral dust particles accumulated soluble material through internal mixing over the Netherlands. The value of the CCN0.2 / CN ratio obtained over the Netherlands (~ 70%) is much greater than those observed over the Saharan region. In addition over the Netherlands, the CCN measurement reached 14 000 particles cm−3 at 0.63% supersaturation level on 30 May. Our model results reveal that more than 70% of the CCN concentration observed on 30 May can be explained by the presence of Saharan aged dust. The study reveals that heterogeneous reactions with inorganic salts converted this Saharan mineral dust into compounds that were sufficiently soluble to impact hygroscopic growth and cloud droplet activation over the Netherlands.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference135 articles.
1. Abdul-Razzak, H. and Ghan., S.: A parameterization of aerosol activation 2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, 2000. 2. Abdul-Razzak, H. and Ghan, S.: Parameterization of the influence of organic surfactants on aerosol activation, J. Geophys. Res., 109, D03205, https://doi.org/10.1029/2003JD004043, 2004. 3. Almeida, G. P., Brito, J., Morales, C. A., Andrade, M. F., and Artaxo, P.: Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCN concentration prediction, Atmos. Chem. Phys., 14, 7559–7572, https://doi.org/10.5194/acp-14-7559-2014, 2014. 4. Ansmann, A., Bosenberg, J., Chaikovsky, A., Comeron, A., Eckhardt, S., Eixmann, R., Freudenthaler, V., Ginoux, P., Komguem, L., Linne, H., Marquez, M., Matthias, V., Mattis, I., Mittev, V., Muller, D., Music, S., Nickovic, S., Pelon, J., Sauvage, L., Sobolewsky, P., Srivastava, M., Sthol, A., Toress, O., Vaughan, G., Wandinger, U., and Wiegner, M.: Long-range transport to saharan dust to northern europe: The 11–16 october 2001 outbreak observed with earlinet, J. Geophys. Res., 108, D124345, https://doi.org/10.1029/2003JD003757, 2003. 5. Ansmann, A., Petzold, A., Kandler, K., Tegen, I., Wendisch, M., Müller, D., Weinzierl, B., Müller, T., and Heintzenberg, J.: Saharan mineral dust experiments samum-1 and samum-2: what have we learned?, Tellus, 63B, 403–429, 2011.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|