Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies

Author:

Neitola K.,Brus D.ORCID,Makkonen U.,Sipilä M.,Mauldin III R. L.,Sarnela N.,Jokinen T.ORCID,Lihavainen H.ORCID,Kulmala M.ORCID

Abstract

Abstract. Sulfuric acid is known to be a key component for atmospheric nucleation. Precise determination of sulfuric-acid concentration is a crucial factor for prediction of nucleation rates and subsequent growth. In our study, we have noticed a substantial discrepancy between sulfuric-acid monomer concentrations and total-sulfate concentrations measured from the same source of sulfuric-acid vapor. The discrepancy of about 1–2 orders of magnitude was found with similar particle-formation rates. To investigate this discrepancy, and its effect on nucleation, a method of thermally controlled saturator filled with pure sulfuric acid (97% wt.) for production of sulfuric-acid vapor is applied and rigorously tested. The saturator provided an independent vapor-production method, compared to our previous method of the furnace (Brus et al., 2010, 2011), to find out if the discrepancy is caused by the production method itself. The saturator was used in a H2SO4–H2O nucleation experiment, using a laminar flow tube to check reproducibility of the nucleation results with the saturator method, compared to the furnace. Two independent methods of mass spectrometry and online ion chromatography were used for detecting sulfuric-acid or sulfate concentrations. Measured sulfuric-acid or total-sulfate concentrations are compared to theoretical predictions calculated using vapor pressure and a mixing law. The calculated prediction of sulfuric-acid concentrations agrees very well with the measured values when total sulfate is considered. Sulfuric-acid monomer concentration was found to be about 2 orders of magnitude lower than theoretical predictions, but with a temperature dependency similar to the predictions and the results obtained with the ion-chromatograph method. Formation rates are reproducible when compared to our previous results with both sulfuric-acid or total-sulfate detection and sulfuric-acid production methods separately, removing any doubts that the vapor-production method would cause the discrepancy. Possible reasons for the discrepancy are discussed and some suggestions include that the missing sulfuric acid is in clusters, formed with contaminants found in most laboratory experiments. One-to-two-order-of-magnitude higher sulfuric-acid concentrations (measured as total sulfate in this study) would contribute to a higher fraction of particle growth rate than assumed from the measurements by mass spectrometers (i.e. sulfuric-acid monomer). However, the observed growth rates by sulfate-containing vapor in this study does not directly imply a similar situation in the field, where sources of sulfate are much more diverse.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3