Rapid transport of East Asian pollution to the deep tropics

Author:

Ashfold M. J.ORCID,Pyle J. A.ORCID,Robinson A. D.,Meneguz E.,Nadzir M. S. M.,Phang S. M.,Samah A. A.,Ong S.,Ung H. E.,Peng L. K.,Yong S. E.,Harris N. R. P.ORCID

Abstract

Abstract. Anthropogenic emissions from East Asia have increased over recent decades. These increases have led to changes in atmospheric composition as far afield as North America under the prevailing westerly winds. Here we show that, during Northern Hemisphere (NH) winter, pollution originating in East Asia also directly affects atmospheric composition in the deep tropics. We present observations of marked intra-seasonal variability in the anthropogenic tracer perchloroethene (C2Cl4) collected at two locations in Borneo (117.84° E, 4.98° N and 118.00° E, 4.22° N) during the NH winter of 2008/2009. We use trajectories calculated with the Numerical Atmospheric-dispersion Modelling Environment to show that the observed enhancements in C2Cl4 mixing ratio are caused by rapid meridional transport, in the form of "cold surges", from the relatively polluted East Asian land mass. In these events air masses can move from ~35° N to Borneo in 4 days. We then present data from the Monitoring Atmospheric Composition and Climate reanalysis which suggest that air masses high in C2Cl4 may also contain levels of the pollutants carbon monoxide and ozone that are approximately double the typical "background" levels in Borneo. In addition to strengthening the meridional transport from the north, cold surges can enhance convection in Southeast Asia, and further trajectory calculations indicate that the polluted air masses can subsequently be lifted to the tropical upper troposphere. This suggests a potentially important connection between midlatitude pollution sources and the very low stratosphere.

Funder

European Commission

European Research Council

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3