Effects of multiple environmental factors on CO<sub>2</sub> emission and CH<sub>4</sub> uptake from old-growth forest soils

Author:

Fang H. J.,Yu G. R.,Cheng S. L.,Zhu T. H.,Wang Y. S.,Yan J. H.,Wang M.,Cao M.,Zhou M.

Abstract

Abstract. To assess contribution of multiple environmental factors to carbon exchanges between the atmosphere and forest soils, four old-growth forests referred to as boreal coniferous forest, temperate needle-broadleaved mixed forest, subtropical evergreen broadleaved forest and tropical monsoon rain forest were selected along eastern China. In each old-growth forest, soil CO2 and CH4 fluxes were measured from 2003 to 2005 applying the static opaque chamber and gas chromatography technique. Soil temperature and moisture at the 10 cm depth were simultaneously measured with the greenhouse gas measurements. Inorganic N (NH4+-N and NO3−-N) in the 0–10 cm was determined monthly. From north to south, annual mean CO2 emission ranged from 18.09 ± 0.22 to 35.40 ± 2.24 Mg CO2 ha−1 yr−1 and annual mean CH4 uptake ranged from 0.04 ± 0.11 to 5.15 ± 0.96 kg CH4 ha−1 yr−1 in the four old-growth forests. Soil CO2 flux in the old-growth forests was mainly driven by soil temperature, followed by soil moisture and NO3−-N. Temperature sensitivity (Q10) of soil CO2 flux was lower at lower latitudes with high temperature and more precipitation, probably because of less soil organic carbon (SOC). Soil NO3− accumulation caused by environmental change was often accompanied by an increase in soil CO2 emission. In addition, soil CH4 uptake decreased with an increase in soil moisture. The response of soil CH4 flux to temperature was dependent upon the optimal value of soil temperature in each forest. Soil NH4+-N consumption tended to promote soil CH4 uptake in the old-growth forests, whereas soil NO3−-N accumulation was not conducive to CH4 oxidation in anaerobic condition. These results indicate that soil mineral N dynamics largely affects the soil gas fluxes of CO2 and CH4 in the old-growth forests, along with climate conditions.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3