A framework for time-dependent ice sheet uncertainty quantification, applied to three West Antarctic ice streams
-
Published:2023-10-06
Issue:10
Volume:17
Page:4241-4266
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Recinos BeatrizORCID, Goldberg DanielORCID, Maddison James R., Todd Joe
Abstract
Abstract. Ice sheet models are the main tool to generate forecasts of ice sheet mass loss, a significant contributor to sea level rise; thus, knowing the likelihood of such projections is of critical societal importance. However, to capture the complete range of possible projections of mass loss, ice sheet models need efficient methods to quantify the forecast uncertainty. Uncertainties originate from the model structure, from the climate and ocean forcing used to run the model, and from model calibration. Here we quantify the latter, applying an error propagation framework to a realistic setting in West Antarctica. As in many other ice sheet modelling studies we use a control method to calibrate grid-scale flow parameters (parameters describing the basal drag and ice stiffness) with remotely sensed observations. Yet our framework augments the control method with a Hessian-based Bayesian approach that estimates the posterior covariance of the inverted parameters. This enables us to quantify the impact of the calibration uncertainty on forecasts of sea level rise contribution or volume above flotation (VAF) due to the choice of different regularization strengths (prior strengths), sliding laws, and velocity inputs. We find that by choosing different satellite ice velocity products our model leads to different estimates of VAF after 40 years. We use this difference in model output to quantify the variance that projections of VAF are expected to have after 40 years and identify prior strengths that can reproduce that variability. We demonstrate that if we use prior strengths suggested by L-curve analysis, as is typically done in ice sheet calibration studies, our uncertainty quantification is not able to reproduce that same variability. The regularization suggested by the L curves is too strong, and thus propagating the observational error through to VAF uncertainties under this choice of prior leads to errors that are smaller than those suggested by our two-member “sample” of observed velocity fields.
Funder
Natural Environment Research Council
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference94 articles.
1. Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A.,
Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N.: The FEniCS
Project Version 1.5, Archive of Numerical Software, 3, 9–23, 2015. a 2. Altena, B., Kääb, A., and Wouters, B.: Correlation dispersion as a measure to better estimate uncertainty in remotely sensed glacier displacements, The Cryosphere, 16, 2285–2300, https://doi.org/10.5194/tc-16-2285-2022, 2022. a, b 3. Arthern, R. J.: Exploring the use of transformation group priors and the method
of maximum relative entropy for Bayesian glaciological inversions, J.
Glaciol., 61, 947–962, https://doi.org/10.3189/2015JoG15J050, 2015. a 4. Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow
accumulation mapped using polarization of 4.3-cm wavelength microwave
emission, J. Geophys. Res.-Atmos., 111, D06107,
https://doi.org/10.1029/2004JD005667, 2006. a 5. Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP+), ISOMIP v. 2 (ISOMIP+) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a, b
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|