The central African soil spectral library: a new soil infrared repository and a geographical prediction analysis

Author:

Summerauer LauraORCID,Baumann PhilippORCID,Ramirez-Lopez LeonardoORCID,Barthel Matti,Bauters Marijn,Bukombe BenjaminORCID,Reichenbach MarioORCID,Boeckx Pascal,Kearsley Elizabeth,Van Oost Kristof,Vanlauwe Bernard,Chiragaga Dieudonné,Heri-Kazi Aimé Bisimwa,Moonen Pieter,Sila Andrew,Shepherd KeithORCID,Bazirake Mujinya Basile,Van Ranst Eric,Baert Geert,Doetterl SebastianORCID,Six JohanORCID

Abstract

Abstract. Information on soil properties is crucial for soil preservation, the improvement of food security, and the provision of ecosystem services. In particular, for the African continent, spatially explicit information on soils and their ability to sustain these services is still scarce. To address data gaps, infrared spectroscopy has achieved great success as a cost-effective solution to quantify soil properties in recent decades. Here, we present a mid-infrared soil spectral library (SSL) for central Africa (CSSL) that can predict key soil properties, allowing for future soil estimates with a minimal need for expensive and time-consuming wet chemistry. Currently, our CSSL contains over 1800 soil samples from 10 distinct geoclimatic regions throughout the Congo Basin and along the Albertine Rift. For the analysis, we selected six regions from the CSSL, for which we built predictive models for total carbon (TC) and total nitrogen (TN) using an existing continental SSL (African Soil Information Service, AfSIS SSL; n=1902) that does not include central African soils. Using memory-based learning (MBL), we explored three different strategies at decreasing degrees of geographic extrapolation, using models built with (1) the AfSIS SSL only, (2) AfSIS SSL combined with the five remaining central African regions, and (3) a combination of AfSIS SSL, the remaining five regions, and selected samples from the target region (spiking). For this last strategy we introduce a method for spiking MBL models. We found that when using the AfSIS SSL only to predict the six central African regions, the root mean square error of the predictions (RMSEpred) was between 3.85–8.74 and 0.40–1.66 g kg−1 for TC and TN, respectively. The ratio of performance to the interquartile distance (RPIQpred) ranged between 0.96–3.95 for TC and 0.59–2.86 for TN. While the effect of the second strategy compared to the first strategy was mixed, the third strategy, spiking with samples from the target regions, could clearly reduce the RMSEpred to 3.19–7.32 g kg−1 for TC and 0.24–0.89 g kg−1 for TN. RPIQpred values were increased to ranges of 1.43–5.48 and 1.62–4.45 for TC and TN, respectively. In general, predicted TC and TN for soils of each of the six regions were accurate; the effect of spiking and avoiding geographical extrapolation was noticeably large. We conclude that our CSSL adds valuable soil diversity that can improve predictions for the Congo Basin region compared to using the continental AfSIS SSL alone; thus, analyses of other soils in central Africa will be able to profit from a more diverse spectral feature space. Given these promising results, the library comprises an important tool to facilitate economical soil analyses and predict soil properties in an understudied yet critical region of Africa. Our SSL is openly available for application and for enlargement with more spectral and reference data to further improve soil diagnostic accuracy and cost-effectiveness.

Publisher

Copernicus GmbH

Subject

Soil Science

Reference90 articles.

1. Angelopoulou, T., Balafoutis, A., Zalidis, G., and Bochtis, D.: From Laboratory to Proximal Sensing Spectroscopy for Soil Organic Carbon Estimation – A Review, Sustainability, 12, 1–24, https://doi.org/10.3390/su12020443, 2020. a

2. Baert, G.: Properties and Chemical Management Aspects of Soils on Different Parent Rocks in the Lower Zaire, Doctoral thesis, Ghent University, Ghent, Belgium, 1995. a

3. Baert, G., Van Ranst, E., Ngongo, M., Kasongo, E., Verdoodt, A., Mujinya, B., and Mukalay, J.: Guide Des Sols En R.D. Congo. Tome II: Description et Données Physico-Chimiques de Profils Types., Imprimé par l'Ecole Technique Salama, Lubumbashi, R.D. Congo, 2009. a

4. Baert, G., Van Ranst, E., Ngongo, M., and Verdoodt, A.: Soil Survey in DR Congo – from 1935 until Today, Meded. Zitt. K. Acad. overzeese Wet, 59, 345–362, 2013. a

5. Ballabio, D. and Consonni, V.: Classification Tools in Chemistry. Part 1: Linear Models, PLS-DA, Analytical Methods, 5, 3790–3798, https://doi.org/10.1039/c3ay40582f, 2013. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3