A tidally driven fjord-like strait close to an amphidromic region
-
Published:2021-11-11
Issue:6
Volume:17
Page:1639-1655
-
ISSN:1812-0792
-
Container-title:Ocean Science
-
language:en
-
Short-container-title:Ocean Sci.
Author:
Erenbjerg Sissal VágsheygORCID, Albretsen Jon, Simonsen KnudORCID, Olsen Erna Lava, Kaas EigilORCID, Hansen Bogi
Abstract
Abstract. The strait studied in this paper, “Sundalagið Norður”, is the northern part of a narrow body of seawater separating the two largest islands in the Faroe Islands (Faroes). It has shallow sills in both ends and considerably deeper waters in between. South of the southern end of the strait there is an amphidromic region for the semidiurnal tides so that the tidal range is much lower south of the strait than north of it. The resulting tidal forcing generates periodically varying inflow of seawater across the northern sill, but only a part of that manages to cross the narrow and shallow southern sill. Combined with a large input of freshwater, this gives the strait a fjord-like character. To investigate how this fjord-like character affects the circulation within the strait and its exchanges with outside waters, a pilot project was initiated to simulate the dynamics of the strait with a high-resolution ocean model for a month. The model simulations show clearly the dominance of tidal forcing over freshwater (estuarine) and wind on timescales up to a day. On longer timescales, the simulations indicate systematic variations in the net flows (averaged over a diurnal tidal period) through both the upper and deeper layers. These long-period variations of net flow in the model simulations are forced by sea level differences between both ends of the strait generated by the dominant fortnightly and monthly tidal constituents (Mf, MSf, Mm, MSm). Harmonic analysis of sea level records from two tide gauges located off each end of the strait demonstrates that this behaviour is not a model artefact and it has pronounced effects on the strait. Not only does it induce long-period (mainly fortnightly) variations in the net flow through the strait, but it also generates variations in the estuarine characteristics. According to the model simulations, periods with net southward flow, typically lasting a week, have a strait-like character with net southward flow almost everywhere. Periods with net northward flow, in contrast, have a more fjord-like character with stronger salinity stratification and a southward counter-flow in the deep layer. This also induces a large difference in renewal rate of the deep water between the two periods, which is important to consider for human utilization of the strait, especially the local aquaculture plant. The combination of topographic, freshwater, and tidal characteristics creating these long-period variations is rather unusual, and it is not known whether similar systems exist elsewhere, but the long-period variations tend to be masked by the stronger semidiurnal and diurnal variations and may easily be overlooked.
Publisher
Copernicus GmbH
Subject
Cell Biology,Developmental Biology,Embryology,Anatomy
Reference35 articles.
1. Campbell, A. R., Simpson, J. H., and Allen, G. L.: The Dynamical Balance of Flow in the Menai Strait, Estuar. Coast. Shelf S., 46, 449–455, https://doi.org/10.1006/ecss.1997.0244,1998. 2. Danmarks Meteorologiske Institut (DMI): Homepage, available at: http://www.dmi.dk, last access: 4 November 2021. 3. Davidsen, E., Førland, E., and Madsen, H.: Orographically enhanced precipitation on the Faroe Islands, in: Nordic Hydrological Program (NHP) Report, Hydrological Conference 1994, Nordic Association for Hydrology, Tórshavn, Faroe Islands, 229–239, 1994. 4. Dyer, K. R.: Estuaries: a physical introduction, John Wiley, Chichester, New York, ISBN 978-0-471-97471-0, 210 pp., 1997. 5. Erenbjerg, S. V., Albretsen, J., Simonsen, K., Sandvik, A. D., and Kaas, E.: A step towards high resolution modeling of the central Faroe shelf circulation by FarCoast800, Reg. Stud. Mar. Sci., 40, 101475, https://doi.org/10.1016/j.rsma.2020.101475, 2020a.
|
|