Improvement of OMI ozone profile retrievals by simultaneously fitting polar mesospheric clouds

Author:

Bak JuseonORCID,Liu Xiong,Kim Jae H.,Deland Matthew T.,Chance KellyORCID

Abstract

Abstract. The presence of polar mesospheric clouds (PMCs) at summer high latitudes could affect the retrieval of ozone profiles using backscattered ultraviolet (UV) measurements. PMC-induced errors in ozone profile retrievals from Ozone Monitoring Instrument (OMI) backscattered UV measurements are investigated through comparisons with Microwave Limb Sounder (MLS) ozone measurements. This comparison demonstrates that the presence of PMCs leads to systematic biases for pressures smaller than 6 hPa; the biases increase from  ∼ −2 % at 2 hPa to  ∼ −20 % at 0.5 hPa on average and are significantly correlated with brightness of PMCs. Sensitivity studies show that the radiance sensitivity to PMCs strongly depends on wavelength, increasing by a factor of  ∼  4 from 300 to 265 nm. It also strongly depends on the PMC scattering, thus depending on viewing geometry. The optimal estimation-based retrieval sensitivity analysis shows that PMCs located at 80–85 km have the greatest effect on ozone retrievals at  ∼  0.2 hPa ( ∼  60 km), where the retrieval errors range from −2.5 % with PMC vertical optical depth (POD) of 10−4 to −20 % with 10−3 POD at backscattering angles. The impacts increase by a factor of  ∼  5 at forward-scattering angles due to stronger PMC sensitivities. To reduce the interference of PMCs on ozone retrievals, we perform simultaneous retrievals of POD and ozone with a loose constraint of 10−3 for POD, which results in retrieval errors of 1–4 × 10−4. It is demonstrated that the negative bias of OMI ozone retrievals relative to MLS can be improved by including the PMC in the forward-model calculation and retrieval.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3