Validation of brightness and physical temperature from two scanning microwave radiometers in the 60 GHz O<sub>2</sub> band using radiosonde measurements

Author:

Navas-Guzmán FranciscoORCID,Kämpfer Niklaus,Haefele AlexanderORCID

Abstract

Abstract. In this paper, we address the assessment of the tropospheric performance of a new temperature radiometer (TEMPERA) at 60 GHz. With this goal, an intercomparison campaign was carried out at the aerological station of MeteoSwiss in Payerne (Switzerland). The brightness temperature and the tropospheric temperature were assessed by means of a comparison with simultaneous and collocated radiosondes that are launched twice a day at this station. In addition, the TEMPERA performances are compared with the ones from a commercial microwave radiometer (HATPRO), which has some different instrumental characteristics and uses a different inversion algorithm. Brightness temperatures from both radiometers were compared with the ones simulated using a radiative transfer model and atmospheric profiles from radiosondes. A total of 532 cases were analyzed under all weather conditions and evidenced larger brightness temperature deviations between the two radiometers and the radiosondes for the most transparent channels. Two different retrievals for the TEMPERA radiometer were implemented in order to evaluate the effect of the different channels on the temperature retrievals. The comparison with radiosondes evidenced better results very similar to the ones from HATPRO, when the eight more opaque channels were used. The study shows the good performance of TEMPERA to retrieve temperature profiles in the troposphere. The inversion method of TEMPERA is based on the optimal estimation method. The main advantage of this algorithm is that there is no necessity for radiosonde information to achieve good results in contrast to conventional methods as neural networks or lineal regression. Finally, an assessment of the effect of instrumental characteristics as the filter response and the antenna pattern on the brightness temperature showed that they can have an important impact on the most transparent channels.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3