A user-orientated column modelling framework for efficient analyses of the Martian atmosphere

Author:

Paton Mark,Harri Ari-MattiORCID,Vierkens Oliver,Savijärvi Hannu

Abstract

Abstract. As spacecraft missions return ever more data from Mars, additional tools will be required to explore and analyse these datasets efficiently. To streamline research into the atmosphere of Mars, a user-orientated modelling capability is developed that enables automatic initialisation and running of a column model. As a demonstration we utilise the modelling framework to provide additional verification for the University of Helsinki and Finnish Meteorological Institute Mars column model temperature profiles above the height of typical lander meteorological measurements, i.e. above 2 m. We utilise the framework at landing site locations that are well characterised to understand the model's applicability and to identify future opportunities for modifications to the framework. We do this by using the framework to compare the column model to temperature soundings made by the Mars Reconnaissance Orbiter. We find that the column model, without any modification, is able to reproduce the observed lapse rates and average temperatures closely in most cases except for a 20–60 K increase over the northern hemisphere mid-winter. We can reproduce this discrepancy by incorporating an adiabatic heating term into the column model. Fitting of the modified column model to the observations results in estimated maximum downward vertical wind velocities of ∼ 10 cm s−1 at altitudes of 15–20 km over the winter solstice at the VL-1 and VL-2 sites. The approach developed here may possibly provide a way to independently estimate or observe the vertical motion in the Martian atmosphere. However, even though the magnitude of the vertical wind speed appears reasonable, it is not clear at this point how much the atmospheric heating is due to other mechanisms such as advection. We have introduced new application software that can quickly find and display the requested data and can be immediately analysed using the included tools. We have demonstrated the potential of this type of software application with a glimpse into the upper atmosphere of Mars.

Publisher

Copernicus GmbH

Subject

Atmospheric Science,Geology,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3