Optimization of CPMG sequences to measure NMR transverse relaxation time <i>T</i><sub>2</sub> in borehole applications

Author:

Ronczka M.,Müller-Petke M.

Abstract

Abstract. Nuclear Magnetic Resonance (NMR) can provide key information such as porosity and permeability for hydrological characterization of geological material. In particular the NMR transverse relaxation time T2 is used to estimate permeability since it reflects a pore-size dependent relaxation process. The measurement sequence (CPMG) usually consists of several thousands of electromagnetic pulses to densely record the relaxation process and to avoid relaxation processes that are due to diffusion. These pulses are equidistantly spaced by a time constant tE. In NMR borehole applications the use of CPMG sequences for measuring the transverse relaxation time T2 is limited due to requirements on energy consumption. For measuring T2, it is state-of-the-art to conduct at least two sequences with different echo spacings (tE) for recording fast and slow relaxing processes that correspond to different pore-sizes. We focus on conducting only a single CPMG sequence and reducing the amount of energy while obtaining both slow and fast decaying components and minimizing the influence of relaxation due to diffusion. Therefore, we tested the usage of CPMG sequences with an increasing tE and a decreasing number of pulses. A synthetic study as well as laboratory measurements on samples of glass beads and granulate material of different grain size spectra were conducted to evaluate the effects of an increasing tE. We show that T2 distributions are broadened if the number of pulses is decreasing and the mean grain size is increasing, which is mostly an effect of a significantly shortened acquisition time. The shift of T2 distributions to small decay times as a function of tE and the mean grain size distribution is observed. We found that it is possible to conduct CPMG sequences with an increased tE. According to the acquisition time and increasing influence of relaxation due to diffusion, the sequence parameters need to be chosen carefully to avoid misinterpretations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science,Geology,Oceanography

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3