Benthic mineralization and nutrient exchange over the inner continental shelf of western India
-
Published:2014-05-27
Issue:10
Volume:11
Page:2771-2791
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Pratihary A. K.,Naqvi S. W. A.,Narvenkar G.,Kurian S.,Naik H.,Naik R.,Manjunatha B. R.
Abstract
Abstract. The western Indian continental shelf is one of the most productive coastal systems of the world ocean. This system experiences extreme changes in its oxygen regime, being normoxic from November to May and suboxic (denitrifying)/anoxic from June to October, owing to the biogeochemical response to cyclical monsoonal influence. In order to understand the impact of the seasonally varying oxygen regime on benthic mineralization, nutrient exchange and, in turn, on the shelf ecosystem, we carried out the first ever intact-core incubations during two contrasting seasons – spring intermonsoon and fall intermonsoon (late southwest monsoon) at a 28 m-deep fixed site on the inner shelf off Goa, dominated by fine-grained cohesive sediments. The results showed that incomplete sediment oxygen consumption (SOC) occurred during April as opposed to the complete SOC and subsequent sulfide flux observed in the fall intermonsoon incubations. The sediments acted as a perennial net source of DIN (dissolved inorganic nitrogen i.e. NO3− + NO2− + NH4+), PO43− and SiO44− to the overlying water column. The efflux of DIN increased from 1.4 to 3.74 mmol m−2 d−1 from April to October, of which NH4+ flux comprised 59–100%. During the oxic regime, ∼75% of diffusing NH4+ appeared to be nitrified (2.55 mmol m−2 d−1), of which ∼77% remained coupled to benthic denitrification. Consequently, 58% of NH4+ flux was lost in active coupled nitrification–denitrification, resulting in substantial N loss (1.98 mmol m−2 d−1) in the sediments. The continental shelf sediments switched over from being a NO3− source during the oxic regime to a NO3− sink during the anoxic regime. During suboxia, benthic denitrification that is fed by NO3- from the overlying water caused N loss at the rate of 1.04 mmol m−2 d−1. Nitrogen loss continued even under sulfidic conditions during October, possibly through the chemolithoautotrophic denitrification, at a potential rate of 3.21 mmol m−2 d−1. Phosphate flux increased more than 4-fold during October as compared to April, due to reductive dissolution of Fe- and Mn oxides. The SiO44− flux increased during October apparently due to the higher availability of siliceous ooze from diatom blooms commonly occurring in the monsoon season. Slow oxidation of organic carbon (Corg) under anoxia, lower temperature and reduced benthic faunal activity appeared to decrease benthic mineralization by 25% as suggested by the drop in the Corg oxidation rate from 63.8 mmol C m−2 d−1 in April to 47.8 mmol C m−2 d−1 in October. This indicated a higher preservation of Corg during the late southwest monsoon. Sediment porosity, Corg content and nutrients did not show significant variations from April to October. Porewaters were found to be enriched with NH4+, PO43− and SiO44− but depleted in NO3− and NO2− in these organic-rich sediments. Significant DIN, PO43− and SiO44− effluxes indicate the potential of benthic input in meeting nutrient demand of the phytoplankton community in this seasonally N-limited shelf system.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference136 articles.
1. Aelion, C. M. and Warttinger, U.: Sulfide inhibition of nitrate removal in coastal sediments, Estuar. Coast, 33, 798–803, 2010. 2. Agnihotri, R., Kurian, S., Fernandes M., Reshma, K., D'Souza W., and Naqvi, S. W. A.: Variability of subsurface denitrification and surface productivity in the coastal eastern Arabian Sea over the past seven centuries, Holocene, 18, 1–10, 2008. 3. Anderson, L. G., Hall, P. O., Iverfeldt, A., Rutgers van der Loeff, M. M., Sundby, B., and Westerlund, F. G.: Benthic respiration measured by total carbonate production, Limnol. Oceanogr., 31, 319–329, 1986. 4. Bartoli, M., Vezzulli, L., Nizzoli, D., Azzoni, R., Porrello, S., Moreno, M., Fabiano, M., and Viaroli, P.: Short-term effect of oxic to anoxic transition on benthic microbial activity and solute fluxes in organic-rich phytotreatment ponds, Hydrobiologia, 629, 123–136, 2009. 5. Benner, R., McCubbin, A. E., and Hodson, R. E.: Anaerobic biodegradation of the lignin and polysaccharide components of lignocelluloses and synthetic lignin by sediment microflora, Appl. Environ. Microbiol., 47, 998–1004, 1984.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|