A net decrease in the Earth's cloud plus aerosol reflectivity during the past 33 yr (1979–2011) and increased solar heating at the surface

Author:

Herman J. R.ORCID,DeLand M. T.,Huang L.-K.,Labow G.,Larko D.,Lloyd S. A.,Mao J.,Qin W.,Weaver C.

Abstract

Abstract. Measured upwelling radiances from Nimbus-7 SBUV, seven NOAA SBUV/2 and the AURA-OMI instruments have been used to calculate the 340 nm Lambertian Equivalent Reflectivity (LER) of the Earth from 1979 to 2011 after applying a new common calibration. The 340 nm LER is highly correlated with cloud and aerosol cover because of the low surface reflectivity of the land and oceans (typically 2 to 6 RU, where 1 RU = 0.01 = 1.0%) relative to the much higher reflectivity of clouds plus aerosols (typically 10 to 90 RU). Because of the nearly constant seasonal and long-term 340 nm surface reflectivity, the 340 nm LER can be used to estimate changes in cloud plus aerosol amount associated with seasonal and interannual variability and decadal climate change. The annual motion of the Intertropical Convergence Zone, episodic El Nino Southern Oscillation ENSO, and latitude dependent seasonal cycles are apparent in the LER time series. LER trend estimates from 5° zonal average and from 2° × 5° latitude × longitude time series show that there has been a global net decrease in cloud plus aerosol reflectivity. The decrease in global cos2 (latitude) weighted average LER from 60° S to 60° N is 0.79 ± 0.03 RU over 33 yr, corresponding to a 3.6 ± 0.2% change in LER. Based on energy balance partitioning (Trenberth et al., 2009) this corresponds to an increase of 2.7 W m−2 of solar energy reaching the Earth's surface (an increase of 1.4% or 2.3 W m−2) absorbed by the surface, which is partially offset by an increase in longwave cooling to space. Most of the decreases in cloud reflectivity occur over land, with the largest decreases occurring over the US (−0.97 RU decade−1), Brazil (−0.9 RU decade−1), and Central Europe (−1.35 RU decade−1). There are reflectivity increases near the west coast of Peru and Chile (0.8 ± 0.1 RU decade−1) over parts of India, China, and Indochina, and almost no change over Australia. The largest Pacific Ocean change is −2 ± 0.1 RU decade−1 over the central equatorial region associated with ENSO. An area in Central Greenland shows a decrease in reflectivity of −0.3 ± 0.03 RU decade−1 caused by cloud and possible surface changes.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3