How relevant is the deposition of mercury onto snowpacks? – Part 2: A modeling study

Author:

Durnford D.,Dastoor A.,Ryzhkov A.,Poissant L.,Pilote M.,Figueras-Nieto D.

Abstract

Abstract. An unknown fraction of mercury that is deposited onto snowpacks is revolatilized to the atmosphere. Determining the revolatilized fraction is important since mercury that enters the snowpack meltwater may be converted to highly toxic bioaccumulating methylmercury. In this study, we present a new dynamic physically-based snowpack/meltwater model for mercury that is suitable for large-scale atmospheric models for mercury. It represents the primary physical and chemical processes that determine the fate of mercury deposited onto snowpacks. The snowpack/meltwater model was implemented in Environment Canada's atmospheric mercury model GRAHM. For the first time, observed snowpack-related mercury concentrations are used to evaluate and constrain an atmospheric mercury model. We find that simulated concentrations of mercury in both snowpacks and the atmosphere's surface layer agree closely with observations. The simulated concentration of mercury in both in the top 30 cm and the top 150 cm of the snowpack, averaged over 2005–2009, is predominantly below 6 ng l−1 over land south of 66.5° N but exceeds 18 ng l−1 over sea ice in extensive areas of the Arctic Ocean and Hudson Bay. The average simulated concentration of mercury in snowpack meltwater runoff tends to be higher on the Russian/European side (>20 ng l−1) of the Arctic Ocean than on the Canadian side (<10 ng l−1). The correlation coefficient between observed and simulated monthly mean atmospheric surface-level GEM concentrations increased significantly with the inclusion of the new snowpack/meltwater model at two of the three stations (midlatitude, subarctic) studied and remained constant at the third (arctic). Oceanic emissions are postulated to produce the observed summertime maximum in concentrations of surface-level atmospheric GEM at Alert in the Canadian Arctic and to generate the summertime volatility observed in these concentrations at both Alert and Kuujjuarapik on subarctic Hudson Bay, Canada. We find that the fraction of deposited mercury that is revolatilized from snowpacks increases with latitude from 28% between 30 and 45° N, to 51% from 45 to 66.5° N, to 70% polewards of 66.5° N on an annual basis. Combining this latitudinal gradient with the latitudinally increasing coverage of snowpacks causes yearly net deposition as a fraction of gross deposition to decrease from 98% between 30 and 45° N to 85% between 45 and 66.5° N to 44% within the Arctic Circle. The yearly net deposition and net accumulation of mercury at the surface within the Arctic Circle north of 66.5° N are estimated at 153 and 117 Mg, respectively. We calculate that 63 and 45 Mg of mercury are deposited annually to the Arctic Ocean directly and indirectly via melting snowpacks, respectively. For terrestrial surfaces within the Arctic Circle, we find that 24 and 21 Mg of mercury are deposited annually directly and indirectly via melting snowpacks, respectively. Within the Arctic Circle, multi-season snowpacks gained an estimated average of 136 kg of mercury annually on land but lost an average of 133 kg annually over sea ice, possibly as a result of increased melting caused by rising temperatures. The developed snowpack/meltwater model can be used for investigating the impact of climate change on the snowpack/atmosphere exchange of mercury.

Publisher

Copernicus GmbH

Reference139 articles.

1. Abbatt, J. P. D.: Interactions of atmospheric trace gases with ice surfaces: adsorption and reaction, Chem. Rev., 103, 4783–4800, 2003.

2. Albert, M. R. and Shultz, E. F.: Snow and firn properties and air-snow transport processes at Summit, Greenland, Atmos. Environ., 36, 2789–2797, 2002.

3. Allan, C. J., Heyes, A., Roulet, N. T., St. Louis, V. L., and Rudd, J. W. M.: Spatial and temporal dynamics of mercury in Precambrian Shield upland runoff, Biogeochemistry, 52, 13–40, 2001.

4. AMAP: Arctic Pollution 2011, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 38 pp., 2011.

5. Anderson, P. S. and Neff, W. D.: Boundary layer physics over snow and ice, Atmos. Chem. Phys., 8, 3563–3582, https://doi.org/10.5194/acp-8-3563-2008, 2008.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3