Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system

Author:

Li L.,Chen C. H.,Huang C.,Huang H. Y.,Zhang G. F.,Wang Y. J.,Wang H. L.,Lou S. R.,Qiao L. P.,Zhou M.,Chen M. H.,Chen Y. R.,Fu J. S.,Streets D. G.,Jang C. J.

Abstract

Abstract. High ozone concentration has become an important issue in summer in most economically developed cities in Eastern China. In this paper, observations at an urban site within the Shanghai city are used to examine the typical high ozone episodes in August 2010, and the MM5-CMAQ modeling system is then applied to reproduce the typical high ozone episodes. In order to account for the contribution of different atmospheric processes during the high pollution episodes, the CMAQ integrated process rate (IPR) is used to assess the different atmospheric dynamics in rural and urban sites of Shanghai, Nanjing and Hangzhou, which are typical cities of the Yangtze River Delta (YRD) region. In order to study the contributions of the main atmospheric processes leading to ozone formation, vertical process analysis in layer 1 (0–40 m), layer 7 (350–500 m), layer 8 (500–900 m) and layer 10 (1400–2000 m) has been considered. The observations compare well with the results of the numerical model. IPR analysis shows that the maximum concentration of ozone occurs due to transport phenomena, including vertical diffusion and horizontal advective transport. The gas-phase chemistry producing O3 mainly occurs in the height of 300–1500 m, causing a strong vertical O3 transport from upper levels to the surface layer. The gas-phase chemistry is an important sink for O3 in the surface layer, coupled with dry deposition. The cloud processes, horizontal diffusion and heterogeneous chemistry contributions are negligible during the whole episode. In the urban Shanghai area, the average O3 production rates contributed by vertical diffusion and horizontal transport are 24.7 ppb h−1, 3.6 ppb h−1, accounting for 27.6% and 6.6% of net surface O3 change, respectively. The average contributions of chemistry, dry deposition and vertical advective transport to O3 production are −21.9, −4.3 and −2.1 ppb h−1, accounting for −25.3%, −5.0% and −3.7% of net O3 change, respectively. In the suburban and industrial areas of Shanghai, net transport accounts for 26.3% and chemical reaction for −11.1% of net surface O3 change. At the Nanjing site, the net transport accounts for 9% and chemical reaction for −32%. However, at the heights of 350–500 m and 500–900 m, during the time period of 10:00–15:00 LST, photochemistry plays the most important role in net O3 production, with the highest positive contributions from gas-phase chemistry to net O3 production reaching 87.3% and 68.6%, respectively, and making a strong vertical O3 transport from upper levels to the surface layer. At the Hangzhou site, the net transport accounts for 9% and chemical reaction for −9% of the net O3 change. Modeling results show that the O3 pollution characteristics among the different cities in the YRD region have both similarities and differences. During the buildup period (usually from 08:00 in the morning after sunrise), the O3 starts to appear in the city regions like Shanghai, Hangzhou, Ningbo and Nanjing and is then transported to the surrounding areas under the prevailing wind conditions. The O3 production from photochemical reaction in Shanghai and the surrounding area are most significant, due to the high emission intensity in the large city; this ozone is then transported out to sea by the westerly wind flow, and later diffuses to rural areas like Chongming island, Wuxi and even to Nanjing. The O3 concentrations start to decrease in the cities after sunset, due to titration of the NO emissions, but ozone can still be transported and maintain a significant concentration in rural areas and even regions outside the YRD region, where the NO emissions are very small.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3