Interaction of anthropogenic and natural emission sources during a wild-land fire event – influence on ozone formation

Author:

Bossioli E.,Tombrou M.,Karali A.,Dandou A.,Paronis D.,Sofiev M.

Abstract

Abstract. The objective of this study is to investigate the contribution of biomass burning in the formation of tropospheric O3. Furthermore, the impact of biogenic emissions under fire and no fire conditions is examined. This is achieved by applying the CAMx chemistry transport model for a wild-land fire event over Western Russia (24 April–10 May 2006). The model results are compared with O3 and isoprene observations from 117 and 9 stations of the EMEP network, respectively. Model computations show that the fire episode altered the O3 sensitivity in the area. In particular, the fire emissions increased surface O3 over Northern and Eastern Europe by up to 80% (40–45 ppb). In case of adopting a high fire NOx/CO emission ratio (0.06), the area (Eastern Europe and Western Russia) is characterized by VOC-sensitive O3 production and the impact of biogenic emissions is proven significant, contributing up to 8 ppb. Under a lower ratio (0.025), total surface O3 is almost doubled due to higher O3 production at the fire spots and lower fires' NO emissions. In this case as well as in the absence of fires, the impact of biogenic emissions is almost negligible. Injection height of the fire emissions accounted for O3 differences of the order of 10%, both at surface and over the planetary boundary layer (PBL).

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3