Atmospheric organic-phase photo-sensitized epoxidation of alkenes by α-dicarbonyls

Author:

Yu G.,Keutsch F. N.

Abstract

Abstract. We report a new pathway of epoxide formation in organic phases via catalytic oxidation of alkenes by air with α-dicarbonyls as photo-sensitizers. Epoxide yields as high as 100% in 30 min of exposure to a solar simulator operating at the equivalent of 48.5° zenith angle are observed. The rate constants are proportional to light intensity and inversely proportional to temperature. The reaction rate is 0th order with respect to alkenes, implying that alkenes with small concentrations may rapidly be converted to epoxides in the organic phase. Based on a statistical estimate of α-dicarbonyl concentrations in secondary organic aerosol, we propose that this reaction could be highly effective under ambient conditions: the 0th-order lifetimes of organic-phase alkenes are estimated to be as low as 10 min, significantly shorter than their gas-phase 1st-order lifetimes, which are typically hours to days. The formation of epoxides in organic particles is expected to increase their hygroscopicity and ability to act as cloud condensation nuclei. Epoxides in deliquesced particles can subsequently form polyalcohols, oligomers, organosulphates and organonitrates, increasing the organic mass in the atmospheric waters.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3