Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: evaluation of the Volatility-Basis-Set approach within the CHIMERE model

Author:

Zhang Q. J.,Beekmann M.,Drewnick F.,Freutel F.,Schneider J.,Crippa M.,Prévôt A. S. H.,Baltensperger U.,Poulain L.,Wiedensohler A.,Sciare J.,Gros V.,Borbon A.,Colomb A.,Michoud V.,Doussin J.-F.,Denier van der Gon H. A. C.,Haeffelin M.,Dupont J.-C.,Siour G.,Petetin H.,Bessagnet B.,Pandis S. N.,Hodzic A.,Sanchez O.,Honoré C.,Perrussel O.

Abstract

Abstract. Results of the chemistry transport model CHIMERE are compared with the measurements performed during the MEGAPOLI summer campaign in the Greater Paris Region in July, 2009. The Volatility-Basis-Set approach (VBS) is implemented into this model, taking into account the volatility of primary organic aerosol (POA) and the chemical aging of semi-volatile organic species. Organic aerosol is the main focus and is simulated with three different configurations related to the volatility of POA and the scheme of secondary organic aerosol (SOA) formation. In addition, two types of emission inventories are used as model input in order to test the uncertainty related to the emissions. Predictions of basic meteorological parameters and primary and secondary pollutant concentrations are evaluated and four pollution regimes according to the air mass origin are defined. Primary pollutants are generally overestimated, while ozone is consistent with observations. Sulfate is generally overestimated, while ammonium and nitrate levels are well simulated with the refined emission data set. As expected, the simulation with non-volatile POA and a single-step SOA formation mechanism largely overestimates POA and underestimates SOA. Simulation of organic aerosol with the VBS approach taking into account the aging of semi-volatile organic compounds (SVOC) shows the best correlation with measurements. All observed high concentration events are reproduced by the model mostly after long range transport, indicating that long range transport of SOA to Paris is well reproduced. Depending on the emission inventory used, simulated POA levels are either reasonable or underestimated, while SOA levels tend to be overestimated. Several uncertainties related to the VBS scheme (POA volatility, SOA yields, the aging parameterization), to emission input data, and to simulated OH levels can be responsible for this behavior. Despite these uncertainties, the implementation of the VBS scheme into the CHIMERE model allowed for much more realistic organic aerosol simulations for Paris during summer time. The advection of SOA from outside Paris is mostly responsible for the highest OA concentration levels. During advection of polluted air masses from north-east (Benelux and Central Europe), simulations indicate high levels of both anthropogenic and biogenic SOA fractions, while biogenic SOA dominates during days with advection from Southern France and Spain.

Funder

European Commission

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3