Chamber simulation of photooxidation of dimethyl sulfide and isoprene in the presence of NO<sub>x</sub>

Author:

Chen T.,Jang M.

Abstract

Abstract. In the kinetic model of this study, to advance the photooxidation of dimethyl sulfide (DMS) in the gas phase, the most recently reported reactions with their rate constants have been included. To improve the model predictability for the formation of sulfuric acid and methanesulfonic acid (MSA), heterogeneous reactions of gaseous DMS products (e.g., dimethyl sulfoxide (DMSO)) on the surface of aerosol have been included in the kinetic model. DMS was photoirradiated in the presence of NOx using a 2 m3 Teflon film chamber. The resulting chamber data was simulated using the new kinetic model. The model included in this study predicted that concentrations of both MSA and H2SO4 would significantly increase due to heterogeneous chemistry and this was well substantiated with experimental data. The model used in this study also predicted the decay of DMS, the formation of other gaseous products such as SO2, dimethyl sulfone (DMSO2), and the ozone formation linked to a NOx cycle. To study the effect of coexisting volatile organic compounds, the photooxidation of DMS in the presence of isoprene and NOx has been simulated using the new kinetic model integrated with the Master Chemical Mechanism (MCM) for isoprene oxidation, and compared to chamber data. Both the model simulation and the experimental data showed an increase in the yields of MSA and H2SO4 as the isoprene concentration increased.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3