Author:
Pausata F. S. R.,Pozzoli L.,Vignati E.,Dentener F. J.
Abstract
Abstract. Ozone pollution represents a serious health and environmental problem. While ozone pollution is mostly produced by photochemistry in summer, elevated ozone concentrations can also be influenced by long range transport driven by the atmospheric circulation and stratospheric ozone intrusions. We analyze the role of large scale atmospheric circulation variability in the North Atlantic basin in determining surface ozone concentrations. Here, we show, using ground station measurements and a coupled atmosphere-chemistry model simulation for the period 1980–2005, that the North Atlantic Oscillation (NAO) does affect surface ozone concentrations – on average, over 10 ppbv on the monthly mean in southwestern, central and northern Europe – during all seasons except fall. The commonly used NAO index is able to capture the link existing between atmospheric dynamics and surface ozone concentrations in winter and spring but it fails in summer. We find that the first Principal Component, computed from the time variation of the sea level pressure (SLP) field, detects the atmosphere circulation/ozone relationship not only in winter and spring but also during summer, when the atmospheric circulation weakens and regional photochemical processes peak. The first Principal Component of the SLP field could be used as a tool to identify areas more exposed to forthcoming ozone pollution events. Finally, our results suggest that the increasing baseline ozone in western and northern Europe during the 1990s could be related to the prevailing phase of the NAO in that period.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献