Re-evaluation of the lifetimes of the major CFCs and CH<sub>3</sub>CCl<sub>3</sub> using atmospheric trends
Author:
Rigby M.,Prinn R. G.,O'Doherty S.,Montzka S. A.,McCulloch A.,Harth C. M.,Mühle J.,Salameh P. K.,Weiss R. F.,Young D.,Simmonds P. G.,Hall B. D.,Dutton G. S.,Nance D.,Mondeel D. J.,Elkins J. W.,Krummel P. B.,Steele L. P.,Fraser P. J.
Abstract
Abstract. Since the Montreal Protocol on substances that deplete the ozone layer and its amendments came into effect, growth rates of the major ozone depleting substances (ODS), particularly CFC-11, -12 and -113 and CH3CCl3, have declined markedly, paving the way for global stratospheric ozone recovery. Emissions have now fallen to relatively low levels, therefore the rate at which this recovery occurs will depend largely on the atmospheric lifetime of these compounds. The first ODS measurements began in the early 1970s along with the first lifetime estimates calculated by considering their atmospheric trends. We now have global mole fraction records spanning multiple decades, prompting this lifetime re-evaluation. Using surface measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) and the National Oceanic and Atmospheric Administration Global Monitoring Division (NOAA GMD) from 1978 to 2011, we estimated the lifetime of CFC-11, CFC-12, CFC-113 and CH3CCl3 using a multi-species inverse method. The CFC-11 lifetime of 45 yr, currently recommended in the World Meteorological Organisation (WMO) Scientific Assessment of Ozone Depletion, lies at the lower uncertainty bound of our estimates which are 524066 yr (1-sigma uncertainty) when AGAGE data were used, and 504066 yr when the NOAA network data were used. Our derived lifetime for CFC-113 is higher than the WMO estimates of 85 yr (10488123 using AGAGE, 10387122 using NOAA). Our estimates of the lifetime of CFC-12 and CH3CCl3 agree well with other recent estimates being 10885137 and 10484135 yr (CFC-12, AGAGE and NOAA, respectively) and 5.24.85.6 and 5.24.85.7 yr (CH3CCl3, AGAGE and NOAA, respectively).
Publisher
Copernicus GmbH
Reference34 articles.
1. Bousquet, P., Hauglustaine, D. A., Peylin, P., Carouge, C., and Ciais, P.: Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform, Atmos. Chem. Phys., 5, 2635–2656, https://doi.org/10.5194/acp-5-2635-2005, 2005. 2. Butler, J. H., Elkins, J. W., Thompson, T. M., Hall, B. D., Swanson, T. H., and Koropalov, V.: Oceanic Consumption of \\chem{CH_3CCl_3}: implications for tropospheric OH, J. Geophys. Res., 96, 22347–22355, 1991. 3. Clerbaux, C., Cunnold, D. M., Derson, J., Engel, A., Fraser, P. J., Mahieu, E., Manning, A., Miller, J., Montzka, S. A., Nassar, R., Prinn, R., Reimann, S., Rinsland, C. P., Simmonds, P., Verdonik, D., Weiss, R., Wuebbles, D., and Y. Yokouchi.: Long-lived compounds, in: Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project-Report No. 50, chapter 1, World Meteorological Organization, Geneva, 2007. 4. Cunnold, D., Alyea, F., and Prinn, R. G.: A methodology for determining the atmospheric lifetime of fluorocarbons, J. Geophys. Res., 83, 5493–5500, 1978. 5. Cunnold, D. M., Prinn, R. G., Rasmussen, R. A., Simmonds, P. G., Alyea, F. N., Cardelino, C. A., Crawford, A. J., Fraser, P. J., and Rosen, R. D.: The atmospheric lifetime experiment, 3. Lifetime methodology and application to three years of \\chem{CFCl_3 data}, J. Geophys. Res., 88, 8379–8400, 1983.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|