Abstract
Abstract. This article, the sixth in the ACP journal series, presents data evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the heterogeneous processes involving liquid particles present in the atmosphere, for which uptake coefficients and adsorption parameters have been presented on the IUPAC website since 2009. The article consists of an introduction and guide to the evaluation, giving a unifying framework for parameterisation of atmospheric heterogeneous processes. We provide summary sheets containing the recommended uptake parameters for the evaluated processes. The experimental data on which the recommendations are based are provided in data sheets in separate appendices for the four surfaces considered: liquid water, deliquesced halide salts, other aqueous electrolytes and sulfuric acid.
Reference45 articles.
1. Ammann, M., Pöschl, U., and Rudich, Y.: Effects of reversible adsorption and Langmuir-Hinshelwood surface reactions on gas uptake by atmospheric particles, Phys. Chem. Chem. Phys., 5, 351–356, 2003.
2. Ammann, M. and Pöschl, U.: Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions – Part 2: Exemplary practical applications and numerical simulations, Atmos. Chem. Phys., 7, 6025–6045, https://doi.org/10.5194/acp-7-6025-2007, 2007.
3. Behr, P., Terziyski, A., and Zellner, R.: Reversible gas adsorption in coated wall flow tube reactors, Model simulations for Langmuir kinetics, Z. Phys. Chem. Int. J. Res. Phys. Chem. Chem. Phys, 218, 1307–1327, 2004.
4. Brown, R. L.: Tubular flow reactor with first-order kinetics, J. Res. Natl. Bureau St., 83, 1–8, 1978.
5. Carslaw, K. S., Clegg, S. L., and Brimblecombe, P.: A thermodynamic model of the system HCl-HNO3-H2SO4-H2O, including solubilities of HBr, from