Physically-based data assimilation

Author:

Levy G.,Coon M.,Nguyen G.,Sulsky D.

Abstract

Abstract. Ideally, a validation and assimilation scheme should maintain the physical principles embodied in the model and be able to evaluate and assimilate lower dimensional features (e.g., discontinuities) contained within a bulk simulation, even when these features are not directly observed or represented by model variables. We present such a scheme and suggest its potential to resolve or alleviate some outstanding problems that stem from making and applying required, yet often non-physical, assumptions and procedures in common operational data assimilation. As proof of concept, we use a sea-ice model with remotely sensed observations of leads in a one-step assimilation cycle. Using the new scheme in a sixteen day simulation experiment introduces model skill (against persistence) several days earlier than in the control run, improves the overall model skill and delays its drop off at later stages of the simulation. The potential and requirements to extend this scheme to different applications, and to both empirical and statistical multivariate and full cycle data assimilation schemes, are discussed.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3