A non-parametric hidden Markov model for climate state identification

Author:

Lambert M. F.,Whiting J. P.,Metcalfe A. V.

Abstract

Abstract. Hidden Markov models (HMMs) can allow for the varying wet and dry cycles in the climate without the need to simulate supplementary climate variables. The fitting of a parametric HMM relies upon assumptions for the state conditional distributions. It is shown that inappropriate assumptions about state conditional distributions can lead to biased estimates of state transition probabilities. An alternative non-parametric model with a hidden state structure that overcomes this problem is described. It is shown that a two-state non-parametric model produces accurate estimates of both transition probabilities and the state conditional distributions. The non-parametric model can be used directly or as a technique for identifying appropriate state conditional distributions to apply when fitting a parametric HMM. The non-parametric model is fitted to data from ten rainfall stations and four streamflow gauging stations at varying distances inland from the Pacific coast of Australia. Evidence for hydrological persistence, though not mathematical persistence, was identified in both rainfall and streamflow records, with the latter showing hidden states with longer sojourn times. Persistence appears to increase with distance from the coast. Keywords: Hidden Markov models, non-parametric, two-state model, climate states, persistence, probability distributions

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fundamental Limits for Learning Hidden Markov Model Parameters;IEEE Transactions on Information Theory;2023-03

2. Learning hidden Markov models with unknown number of states;Physica A: Statistical Mechanics and its Applications;2022-05

3. Watersheds may not recover from drought;Science;2021-05-14

4. Nonasymptotic control of the MLE for misspecified nonparametric hidden Markov models;Electronic Journal of Statistics;2021-01-01

5. Clustering Aircraft Trajectories According to Air Traffic Controllers' Decisions;2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC);2020-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3