Consistent assimilation of multiple data streams in a carbon cycle data assimilation system

Author:

MacBean NatashaORCID,Peylin Philippe,Chevallier FrédéricORCID,Scholze MarkoORCID,Schürmann Gregor

Abstract

Abstract. Data assimilation methods provide a rigorous statistical framework for constraining parametric uncertainty in land surface models (LSMs), which in turn helps to improve their predictive capability and to identify areas in which the representation of physical processes is inadequate. The increase in the number of available datasets in recent years allows us to address different aspects of the model at a variety of spatial and temporal scales. However, combining data streams in a DA system is not a trivial task. In this study we highlight some of the challenges surrounding multiple data stream assimilation for the carbon cycle component of LSMs. We give particular consideration to the assumptions associated with the type of inversion algorithm that are typically used when optimising global LSMs – namely, Gaussian error distributions and linearity in the model dynamics. We explore the effect of biases and inconsistencies between the observations and the model (resulting in non-Gaussian error distributions), and we examine the difference between a simultaneous assimilation (in which all data streams are included in one optimisation) and a step-wise approach (in which each data stream is assimilated sequentially) in the presence of non-linear model dynamics. In addition, we perform a preliminary investigation into the impact of correlated errors between two data streams for two cases, both when the correlated observation errors are included in the prior observation error covariance matrix, and when the correlated errors are ignored. We demonstrate these challenges by assimilating synthetic observations into two simple models: the first a simplified version of the carbon cycle processes represented in many LSMs and the second a non-linear toy model. Finally, we provide some perspectives and advice to other land surface modellers wishing to use multiple data streams to constrain their model parameters.

Publisher

Copernicus GmbH

Reference51 articles.

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3