Phospholipid synthesis rates in the eastern subtropical South Pacific Ocean
-
Published:2008-02-06
Issue:1
Volume:5
Page:133-139
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Van Mooy B. A. S.,Moutin T.,Duhamel S.,Rimmelin P.,Van Wambeke F.
Abstract
Abstract. Membrane lipid molecules are a major component of planktonic organisms and this is particularly true of the microbial picoplankton that dominate the open ocean; with their high surface-area to volume ratios, the synthesis of membrane lipids places a major demand on their overall cell metabolism. Specifically, the synthesis of cell membrane phospholipids creates a demand for the nutrient phosphorus, and we sought to refine our understanding of the role of phospholipids in the upper ocean phosphorus cycle. We measured the rates of phospholipid synthesis in a transect of the eastern subtropical South Pacific from Easter Island to Concepcion, Chile as part of the BIOSOPE program. Our approach combined standard phosphorus radiotracer incubations and lipid extraction methods. We found that phospholipid synthesis rates varied from less than 1 to greater than 200 pmol P L−1 h−1, and that phospholipid synthesis contributed between less than 5% to greater than 22% of the total PO43− incorporation rate. Changes in the percentage that phospholipid synthesis contributed to total PO43− uptake were strongly correlated with the ratio of primary production to bacterial production, which supported our hypothesis that heterotrophic bacteria were the primary agents of phospholipid synthesis. The spatial variation in phospholipid synthesis rates underscored the importance of heterotrophic bacteria in the phosphorus cycle of the eastern subtropical South Pacific, particularly the hyperoligotrophic South Pacific subtropical gyre.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference25 articles.
1. Bell, M. V. and Pond, D.: Lipid composition during growth of motile and coccolith forms of Emiliania huxleyi, Phytochemistry, 41, 465–471, 1996. 2. Benning, C.: Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol, Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 53–75, 1998. 3. Björkman, K., Thomson-Bulldis, A. L., and Karl, D. M.: Phosphorus dynamics in the North Pacific subtropical gyre, Aquat. Microb. Ecol., 22, 185–198, 2000. 4. Bligh, E. G. and Dyer, W. J.: A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911–917, 1959. 5. Bonnet, S., Guieu, C., Bruyant, F., Prasil, O., Raimbault, P., Van Wambeke, F., Gorbunov, M., Zehr, J. P., Grob, C., Masquelier, S., Garczareck, L., and Claustre, H.: Nutrients controlling primary productivity in the South East Pacific (BIOSOPE cruise), Biogeosciences Discuss., 4, 2733–2759, 2007.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|