Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: comparison with coincident satellite and aircraft measurements

Author:

Livingston J. M.,Schmid B.,Russell P. B.,Eilers J. A.,Kolyer R. W.,Redemann J.,Ramirez S. R.,Yee J.-H.,Swartz W. H.,Trepte C. R.,Thomason L. W.,Pitts M. C.,Avery M. A.,Randall C. E.,Lumpe J. D.,Bevilacqua R. M.,Bittner M.,Erbertseder T.,McPeters R. D.,Shetter R. E.,Browell E. V.,Kerr J. B.,Lamb K.

Abstract

Abstract. During the 2003 SAGE (Stratospheric Aerosol and Gas Experiment) III Ozone Loss and Validation Experiment (SOLVE) II, the fourteen-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was mounted on the NASA DC-8 aircraft and measured spectra of total and aerosol optical depth (TOD and AOD) during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 measurements by using a linear least squares method that exploits the differential ozone absorption in the seven AATS-14 channels located within the Chappuis band. We compare AATS-14 columnar ozone retrievals with temporally and spatially near-coincident measurements acquired by the SAGE III and the Polar Ozone and Aerosol Measurement (POAM) III satellite sensors during four solar occultation events observed by each satellite. RMS differences are 19 DU (7% of the AATS value) for AATS-SAGE and 10 DU (3% of the AATS value) for AATS-POAM. In these checks of consistency between AATS-14 and SAGE III or POAM III ozone results, the AATS-14 analyses use airmass factors derived from the relative vertical profiles of ozone and aerosol extinction obtained by SAGE III or POAM III. We also compare AATS-14 ozone retrievals for measurements obtained during three DC-8 flights that included extended horizontal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS) and the Global Ozone Monitoring Experiment (GOME) satellite sensors. To enable these comparisons, the amount of ozone in the column below the aircraft is estimated either by assuming a climatological model or by combining SAGE and/or POAM data with high resolution in-situ ozone measurements acquired by the NASA Langley Research Center chemiluminescent ozone sensor, FASTOZ, during the aircraft vertical profile at the start or end of each flight. Resultant total column ozone values agree with corresponding TOMS and GOME measurements to within 10-15 DU (~3%) for AATS data acquired during two flights - a longitudinal transect from Sweden to Greenland on 21 January, and a latitudinal transect from 47° N to 35° N on 6 February. For the round trip DC-8 latitudinal transect between 34° N and 22° N on 19-20 December 2002, resultant AATS-14 ozone retrievals plus below-aircraft ozone estimates yield a latitudinal gradient that is similar in shape to that observed by TOMS and GOME, but resultant AATS values exceed the corresponding satellite values by up to 30 DU at certain latitudes. These differences are unexplained, but they are attributed to spatial and temporal variability that was associated with the dynamics near the subtropical jet but was unresolved by the satellite sensors. For selected cases, we also compare AATS-14 ozone retrievals with values derived from coincident measurements by the other two DC-8 based solar occultation instruments: the National Center for Atmospheric Research Direct beam Irradiance Airborne Spectrometer (DIAS) and the NASA Langley Research Center Gas and Aerosol Monitoring System (GAMS). AATS and DIAS retrievals agree to within RMS differences of 1% of the AATS values for the 21 January and 19-20 December flights, and 2.3% for the 6 February flight. Corresponding AATS-GAMS RMS differences are ~1.5% for the 21 January flight; GAMS data were not compared for the 6 February flight and were not available for the 19-20 December flight. Line of sight ozone retrievals from coincident measurements obtained by the three DC-8 solar occultation instruments during the SAGE III solar occultation event on 24 January yield RMS differences of 2.1% for AATS-DIAS and 0.5% for AATS-GAMS.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3