ROAD CONDITION ASSESSMENT FROM AERIAL IMAGERY USING DEEP LEARNING

Author:

Merkle N.,Henry C.,Azimi S. M.,Kurz F.

Abstract

Abstract. Terrestrial sensors are commonly used to inspect and document the condition of roads at regular intervals and according to defined rules. For example in Germany, extensive data and information is obtained, which is stored in the Federal Road Information System and made available in particular for deriving necessary decisions. Transverse and longitudinal evenness, for example, are recorded by vehicles using laser techniques. To detect damage to the road surface, images are captured and recorded using area or line scan cameras. All these methods provide very accurate information about the condition of the road, but are time-consuming and costly. Aerial imagery (e.g. multi- or hyperspectral, SAR) provide an additional possibility for the acquisition of the specific parameters describing the condition of roads, yet a direct transfer from objects extractable from aerial imagery to the required objects or parameters, which determine the condition of the road is difficult and in some cases impossible. In this work, we investigate the transferability of objects commonly used for the terrestrial-based assessment of road surfaces to an aerial image-based assessment. In addition, we generated a suitable dataset and developed a deep learning based image segmentation method capable of extracting two relevant road condition parameters from high-resolution multispectral aerial imagery, namely cracks and working seams. The obtained results show that our models are able to extraction these thin features from aerial images, indicating the possibility of using more automated approaches for road surface condition assessment in the future.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3