TRANSFER LEARNING FOR INDOOR OBJECT CLASSIFICATION: FROM IMAGES TO POINT CLOUDS

Author:

Balado J.,Díaz-Vilariño L.,Verbree E.,Arias P.ORCID

Abstract

Abstract. Indoor furniture is of great relevance to building occupants in everyday life. Furniture occupies space in the building, gives comfort, establishes order in rooms and locates services and activities. Furniture is not always static; the rooms can be reorganized according to the needs. Keeping the building models up to date with the current furniture is key to work with indoor environments. Laser scanning technology can acquire indoor environments in a fast and precise way, and recent artificial intelligence techniques can classify correctly the objects that contain. The objective of this work is to study how to minimize the use of point cloud samples in Neural Network training, tedious to label, and replace them with images obtained from online sources. For this, point clouds are converted to images by means of rotations and projections. The conversion of a 3D vector data to a 2D raster allows the use of Convolutional Neural Networks, the achievement of several images for each acquired point cloud object and the combination with images obtained from online sources, such as Google Images. The images have been distributed among the validation and testing training sets following different percentages. The results show that, although point cloud images cannot be completely dispensed within the training set, only 10% of these achieve high accuracy in the classification.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SEMANTIC POINT CLOUD SEGMENTATION IN URBAN ENVIRONMENTS WITH 1D CONVOLUTIONAL NEURAL NETWORKS;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2024-03-08

2. Exploiting BIM Objects for Synthetic Data Generation toward Indoor Point Cloud Classification Using Deep Learning;Journal of Computing in Civil Engineering;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3