THE WHOLE IS OTHER THAN THE SUM OF ITS PARTS: SENSIBILITY ANALYSIS OF 360° URBAN IMAGE SPLITTING

Author:

Beaucamp B.,Leduc T.,Tourre V.,Servières M.ORCID

Abstract

Abstract. 360° imagery has been increasingly used to estimate the subjective qualities of the urban space, such as the feeling of safety or the liveliness of a place. These spherical panoramas offer an immersive view of the urban scene, close to the experience of a pedestrian. In recent years, Deep Learning approaches have been developed for this estimation task, only using flat images because these images are easier to annotate and process with standard CNNs. Thus to qualify the whole urban space, the panoramic images are divided into four flat sub-images that can be processed by the trained neural networks. The sub-images cover the 360° field of view, e.g. front, back, left, and right views. The four scores obtained are averaged to represent the level of the quality at the location of the panorama. However, this split introduces a bias since some elements of the urban space are halved over two images and the global context is lost. Based on the Place Pulse 2.0 dataset, this paper investigates the impact of splitting 360° panoramas on the perceptual scores predicted by neural networks. For each panorama, we predict the score for thirty-six overlapping sub-images. The scores were shown to have high variability and be highly dependent on the direction of the camera for the perspective images. This indicates that four images are not sufficient to capture the complexity of the perceptual qualities of the urban space.

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3