SEMI-SUPERVISED SEGMENTATION OF CONCRETE AGGREGATE USING CONSENSUS REGULARISATION AND PRIOR GUIDANCE

Author:

Coenen M.,Schack T.,Beyer D.,Heipke C.,Haist M.

Abstract

Abstract. In order to leverage and profit from unlabelled data, semi-supervised frameworks for semantic segmentation based on consistency training have been proven to be powerful tools to significantly improve the performance of purely supervised segmentation learning. However, the consensus principle behind consistency training has at least one drawback, which we identify in this paper: imbalanced label distributions within the data. To overcome the limitations of standard consistency training, we propose a novel semi-supervised framework for semantic segmentation, introducing additional losses based on prior knowledge. Specifically, we propose a lightweight architecture consisting of a shared encoder and a main decoder, which is trained in a supervised manner. An auxiliary decoder is added as additional branch in order to make use of unlabelled data based on consensus training, and we add additional constraints derived from prior information on the class distribution and on auto-encoder regularisation. Experiments performed on our concrete aggregate dataset presented in this paper demonstrate the effectiveness of the proposed approach, outperforming the segmentation results achieved by purely supervised segmentation and standard consistency training.

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fresh Concrete Properties from Stereoscopic Image Sequences;PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science;2024-08-26

2. Concrete forensic analysis using deep learning-based coarse aggregate segmentation;Automation in Construction;2024-06

3. Concrete 4.0 ‐ Sustainable concrete construction with digital quality control;ce/papers;2023-12

4. Research on Intelligent Classification of Aggregates based on SegFormer;2022 4th International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM);2022-10

5. ConsInstancy: learning instance representations for semi-supervised panoptic segmentation of concrete aggregate particles;Machine Vision and Applications;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3