INVESTIGATING FULLY CONVOLUTIONAL NETWORK TO SEMANTIC LABELLING OF BATHYMETRIC POINT CLOUD

Author:

Daniel S.,Dupont V.

Abstract

Abstract. The benefit of autonomous vehicles in hydrography is largely based on the ability of these platforms to carry out survey campaigns in a fully autonomous manner. One solution is to have real-time processing onboard the survey vessel. To meet this real-time processing goal, deep learning based-models are favored. Although Artificial Intelligence (AI) is booming, the main studies have been devoted to optical images and more recently, to LIDAR point clouds. However, little attention has been paid to the underwater environment. In this paper, we present an investigation into the adaptation of deep neural network to multi-beam echo-sounder (MBES) point cloud in order to classify sea-bottom morphology. More precisely, the paper investigates whether fully convolutional network can be trained while using the native 3D structure of the point cloud. A preprocessing approach is provided in order to overcome the lack of adequate training data. The results reported from the test data sets show the level of complexity related to natural, underwater terrain features where a classification accuracy no better than 65% can be reached when 2 micro topographic classes are used. Point density and resolution have a strong impact on the seabed morphology thereby affecting the classification scheme.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3